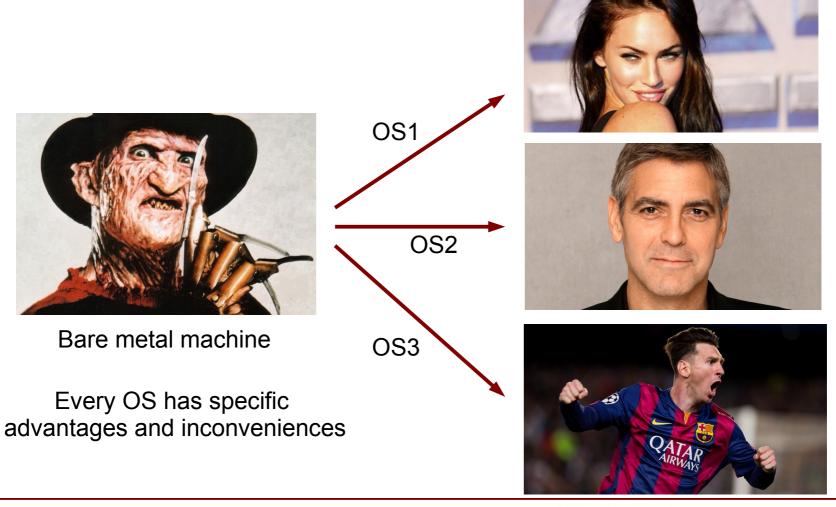

Professional Seminars II: Operating Systems for Embedded Systems

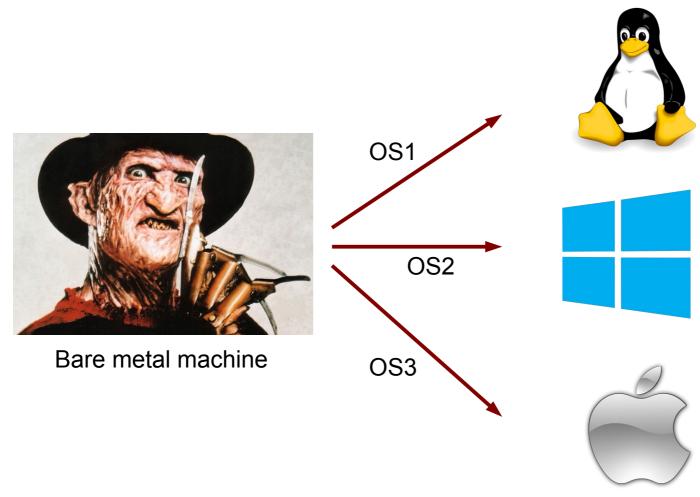
Introduction

r05 Ángel Perles


Contents

- Operating Systems
- OS for Embedded
- Linux for Embedded
- Raspberry Pi

Operating Systems


 A set of computer programs that provide an abstraction of the physical machine to give you an enhanced/virtual machine

Operating Systems

 A set of computer programs that provide an abstraction of the physical machine to give you an enhanced/virtual machine

These are desktop-oriented OSes

Operating Systems

- A set of computer programs that provide an abstraction of the physical machine to give you an enhanced/virtual machine
 - Hardware and software resource management. For example:
 - Process creation, destruction and CPU assignment
 - Memory assignment
 - Persistence
 - How data is stored: files, directories, ...
 - Application services:
 - User applications invoke services of the OS

- Every embedded system has different needs
 - smartphones -> best user experience
 - router -> high throughput, lowest price
 - autopilot, ABS brake -> hard real-time, safety

copter control (German Aerospace Centre courtesy)

- There are commercial and free OSes focused to this segment
 - for microcontrollers: FreeRTOS/SafeRTOS, uCos, RTX, ...
 - for general pourpose processors:
 - vxWorks: http://windriver.com/products/vxworks/
 - QNX: http://www.qnx.com/
 - Nucleus: https://www.mentor.com/embedded-software/nucleus/
 - Linux: http://www.linuxfoundation.org/
 - etc.

5 min. to take a look to vxWorks and QNX

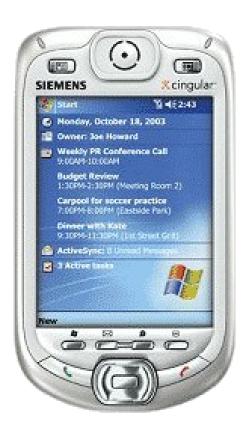
- An OS is insufficient. Please, take care of the ECOSYSTEM
 - Available programming languages
 - Information and reference examples
 - Community
 - Debugging aids
 - Supported platforms (ARM, MIPS, x86, RISC-V, ...)
 - Commercial support
 - Licensing
 - Open source
 - https://m.eet.com/media/1246048/2017-embedded-market-study.pdf

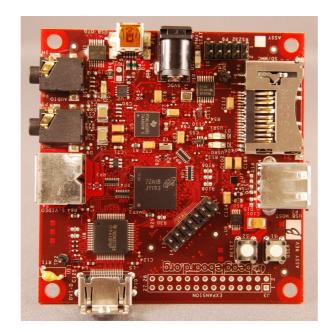
- The GNU and LINUX combo excels because:
 - Available programming languages -> free and open
 - Information and reference examples
 - Community -> BIG, and not only engineers
 - Debugging aids -> free and open
 - Supported platforms (ARM, MIPS, x86, RISC-V, ...)
 - Commercial support -> e.g. Red Hat
 - Licensing -> well some problems here: GPL, LGPL, ...
 - Open source
 - etc.

Linux for Embedded

- Present in lots of devices
 - Smartphones: Android is based on Linux
 - Routers, IoT infrastructures
 - NAS
 - Drones (Parrot, ...)
 - etc.

Linux for Embedded


"Hack" community


"Geek" community

"Democratic" community

Beagleboard
Texas Instruments OMAP3

Raspberry Pi Broadcom BCM 2xxx

Raspberry Pi

- The perfect fit for noobs
 - To learn Linux
 - To learn embedded
 - To learn hardware interface
 - ... and fantastic community of experts and noobs

Raspberry Pi has the same approach than Arduino for microcontrollers

http://www.raspberrypi.org/

Raspberry Pi

- For the lab (slightly outdated)
- Raspberry Pi 2 model B
 - "SoC" (Sytem-on-Chip) Broadcom BCM2836
 - 900MHz quad-core ARM Cortex-A7 processor
 - GPU VideoCore 4 (plays 1080p video)
 - 1 GiB of RAM
 - HDMI video output
 - Audio output
 - 4 USB 2.0 ports
 - Ethernet 10/100 LAN connection

