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Abstract: In multitask, preemptive real-time systems, the use of cache memories makes estimating the
response time of tasks difficult, due to the dynamic, adaptive and non-predictable behaviour of cache
memories. This work presents a comprehensive method for attaining predictability on the use of
caches in real-time systems through the use of locking caches, which ensure cache contents will
remain unchanged during the execution of each task. Nowadays, locking caches are present in several
commercial processors. In order to select the contents to be locked in cache, a genetic algorithm has
been developed. Experimental results indicate that this scheme has a high level of predictability, and
that the performance loss is negligible for around 70% of the tasks. Copyright © 2002 IFAC
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1. INTRODUCTION1

Modern microprocessors include cache memories in
their memory hierarchy to increase system
performance. General-purpose systems benefit directly
from this architectural improvement, but specific
systems, such as hard real-time systems, need
additional hardware resources and/or system analysis to
guarantee the time correctness of the system's
behaviour when cache memories are present. In
multitask, preemtive real-time systems, using cache
memories presents two problems.

The first problem is to calculate the Worst Case
Execution Time (WCET) due to the intra-task or
intrinsic interference. Intra-task interference arises
when a task removes its own instructions from the
cache due to conflict and capacity misses. When
removed instructions are executed again, a cache miss
increases the execution time of the task. This way, the
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delay caused by cache memory interference must be
included in the WCET calculation.

The second problem is to calculate the task response
time due to the inter-task or extrinsic interference.
Inter-task interference arises in preemptive
multitasking systems when a task displaces the working
set of any other task from the cache. When the
preempted task resumes execution, a burst of cache
misses increases its execution time. This effect, called
cache-refill penalty or cache-related preemption delay
must be considered in the schedulability analysis, since
it situates task execution time over the precalculated
WCET.

Several solutions have been proposed for the use of
cache memories in real-time systems. Healy, et al.
(1999), Lim, et al. (1994), and Li, et al (1996), analyse
cache behaviour to estimate task execution time
considering the intra-task interference. Busquets, et al
(1996), and Lee, et al. (1997), analyse cache behaviour
to estimate task response time considering the inter-
task interference, using a precalculated cached WCET.
Kirk (1989), Liedtke, et al. (1997), and Wolfe (1993),
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use hardware and software techniques to eliminate or
reduce the inter-task interference.

The main drawback of previous solutions is that they
only solve one side of the problem: intrinsic
interference or extrinsic interference, and they consider
that the other side is already solved by a different
technique. Furthermore, in order to get accurate
response time estimations, complex analysis techniques
are required.

The main goal of this work is to present a cache
scheme capable of offering full predictability for
WCET estimation, and a bounded value of extrinsic
interference, required for the schedulability analysis.
This goal is achieved using the cache-managing
instructions that are present in modern processors,
instructions such as selective preload (cache fill) and
cache locking. These features are used in order to
attain: easy schedulability analysis, accurate WCET
estimations, and high performance (actual execution
times similar to running with conventional and
unpredictable cache).

The technique is based on the ability of several
processors in locking down the cache, precluding the
removal of its contents, but allowing references to the
data or instructions already stored within the cache.
When a task begins or resumes its execution, a
preselected set of instructions is loaded and locked in
the cache. Thus, intra-task interference is eliminated,
since cache content remains unchanged during task
execution. After preemption, a task always reloads the
same set of instructions, and as a result, the value of the
cache refill penalty is fixed and known.

This work only considers instruction cache, without
regard to other architecture improvements. The paper is
organised as follows: the following section illustrates
the hardware and system operation required to reach
both predictability and the best possible performance.
Section three introduces the algorithms for calculating
WCET and Response Time when a locking cache is
used. Next, a description of the genetic algorithm used
to select the best set of instructions to load in a cache is
presented. Finally, experimental results are described.

2. SYSTEM OVERVIEW

Several processors offer the ability to lock cache
memory contents, like Intel-960, some x86 family
processors, Motorola MPC7400, Integrated Device
Technology 79R4650 and 79RC64574, to name a few.
Each processor implements cache locking in several
ways, allowing locking the entire cache, only a part of
it, or locking in a per-line basis. In all these cases, the
locked portion of the cache will not be later selected for
refill by any other data or instruction, its contents
remaining unchanged.

The IDT-79R4650 cache schema offers an 8KB two-set
associative instruction cache. Also, the processor offers

the instruction “cache fill”, an instruction to selectively
load cache contents. However, this processor allows
locking a single cache set, leaving the remaining cache
set unlocked Since the main objective of this work is to
reach a deterministic cache, locking the entire cache is
required. In the MPC7400, it is possible to lock the
entire cache, using a one-line size buffer to temporally
store instructions not loaded in the cache, consequently
improving sequential access to these addresses. The
problem with this processor is that no selective load of
cache contents is available. Therefore, this work
proposes a merge of the two above-mentioned
processors, resulting in a cache system with the
following characteristics:

- The cache can be totally locked or unlocked. When
the cache is locked, there are no new tag allocations.
- If the processor addresses an instruction located in the
locking cache, this instruction is served from the cache.
- If the processor addresses an instruction located in the
temporal buffer, this instruction is served from this
buffer within cache access time.
- If the processor addresses an instruction that is not
located in the locking cache or temporal buffer, this
instruction is served from main memory. The temporal
buffer is filled with the block containing the address
demanded by the processor.
- The cache can be loaded using a cache-fill instruction,
selecting the memory block to be loaded.
- The cache can be locked, unlocked and flushed using
cache-managing instructions.
- The cache may be a direct mapped cache or a set
associative cache. Increasing the associative-level may
increase performance, but a direct-mapped cache is
enough to reach predictability.

A fully locked cache allows obtaining the maximum
possible performance, while making the cache
deterministic. The temporal buffer reduces access time
to the memory blocks that are not loaded in the cache,
since only references to the first instruction in the block
produce cache miss.

For each task, a set of instructions will be selected to be
locked in the instruction cache. The address of each
main memory block is stored in a table called Task’s
Locking Table (TLT). This TLT is filled by a post-
processing tool after the executable file is generated.
The operation of the locking-cache system is as
follows:

- Before executing a task, the OS loader invalidates the
cache (clearing all locked areas) and loads and locks
the instructions referenced in the TLT.
- After preemption, and just before the resumed task is
executed, the OS scheduler invalidates the cache, and
loads and locks the instructions referenced in the TLT.

This way, when a task begins or resumes its execution,
the cache contents are a-priori known, and remain
without change until the task ends or is preempted.
Thus, cache behaviour is now predictable. Preloaded
instructions can belong to any part of the task, and may



be large consecutive instruction sequences or small,
individual separate blocks.

3. SCHEDULABILITY ANALYSIS

Schedulability analysis may be achieved using
Response Time Analysis (RTA). Equation 1 shows the
expression of RTA, used to calculate, in several
iterations, the response time of each task in the system,
which may be compared to the task deadline. In this
equation, Wi denotes the response time of task τi, Ci is
the WCET of τi without preemptions, Bi denotes the
time task τi is blocked, Tj is the period of task τj and
hp(i) is the set of tasks with higher priority than task τi.
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In a cached system, the schedulability analysis must
consider the effect of the cache, and RTA must be
extended to take account of the cache refill penalty.
CRTA (Busquets, et al. 1996) may be used to calculate
the response time of each task when cache memory is
present. Equation 2 shows the expression of CRTA,
where Ci is the WCET of τi without preemptions but
considering cache effect, and γj is the rise in the
response time that task τi experiences due to task τj.
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In a preemptive system and regarding cache, a task may
suffer two types of extrinsic interference: direct
interference or indirect interference. Direct interference
means that a task increases its response time because it
is forced to reload its own instructions that had been
previously removed during preemption. Indirect
interference means that a task increases its response
time because other higher priority task increases its
response time, due to its own extrinsic interference. In
Figure 1.a, task 3 increases its response time because it
is forced to reload cache contents after executions of
task 2 and task 1. In this case, task 3 only suffers direct
interference. In Figure 1.b, task 2 increases its response
time by reloading cache contents after the execution of
task 1 (direct interference), and task 3 increases its
response time by reloading cache contents after the
execution of task 2 (direct interference) and due to the
increment in the response time of task 2 (indirect
interference). In both cases, task 3 is preempted twice,
but the value of the cache refill penalty is different for
each scenario.

The value of direct-extrinsic interference is the time a
task needs to load and lock its instructions in the cache.
The value of indirect-extrinsic interference is the time
other higher priority task needs to load and lock its
instructions in the cache. Since response time analysis
must consider de worst case scenario in order to
provide an upper bound of tasks’ response time, the

maximum possible increment of time must be
considered for each preemption in the CRTA
expression. This way, a task τi, preempted by a task τj,
can increase its response time due to its direct
interference, or due to the increment suffered by other
tasks (indirect interference), with higher priority than
task τi and lower priority than task τj. The higher value
obtained will be the cache refill penalty. Equation 3
shows the cache refill penalty expression for a task τi

preempted by a task τj; and equation 4 shows the
CRTA expression using the proposed locking-cache
scheme.

Task1

Task 2

Task3
����������

���������������
����������

����

�����������

Task1

Task 2

Task3

���
���
�����
�����

�����
�����

����
����
������
������ ���

���
�����
�����

����
���� �������

�������
�����
�����

���
���

����� ����

  a) Task 3 suffers only direct interference.

  b) Task 3 suffers direct and indirect interference.

Task begins execution. Locking instructions. Task execution. Task ends execution.

Figure 1. Example of direct and indirect extrinsic
interference.
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In the CRTA expression, Ci represents the WCET of
task τi, and this must be calculated while taking into
account the existence of the cache. To calculate the
WCET of a task and taking into account the presence of
the locking cache, a modified timing analysis (Shaw,
1989) is proposed.

Cache line size: 4 instructions
V: Number of Vertex.
N: Number of Block.

Branch: Conditional Branch
Jump: Inconditional Branch
Seq: No Branch Instruction

Seq

Jump

Branch

V 1
N 1

V 5
N 3

V 4
N 2

V 3
N 2

M
em

or
y

B
lo

ck
 1

M
em

or
y

B
lo

ck
 2

M
em

or
y

B
lo

ck
 3

V  6
N 4M

em
or

y
B

lo
ck

 4

Seq

Seq
Seq
Seq

Seq
Seq

Seq
Seq
Seq
Seq

Seq
Seq
Seq

V 2
N 1

Figure 2. Example of c-cfg.

From the task's Control Flow Graph and machine code,
an extended Control Flow Graph, called Cached-
Control Flow Graph (c-cfg), is created. In this c-cfg, a
vertex is a sequence of instructions without flow break,
and all instructions on a vertex map in the same cache
line. This model differs from conventional CFG in the
vertex meaning, since the c-cfg models not only the
task's paths but also how the cache is used. Figure 2
illustrates an example. This c-cfg can be represented
with a simple string, an expression that can be



evaluated to obtain the WCET task. Figure 3 shows the
expression for three basic c-cfg. In these expressions, Ei
represents the execution time of vertex Vi.
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Figure 3. Expressions for three basic structures.

The WCET of a task can be calculated by evaluating
the expression while taking into account the execution
time of each vertex. The execution time of a vertex
depends on the number of instructions into the vertex
and on the cache state when the vertex is executed. In a
cached system, the cache state can change for each
execution of a vertex, so the execution time is not
constant. But in a locked cache, the cache state remains
unchanged, so the execution time of a vertex is constant
for all executions. This way, the execution time of a
vertex can be calculated as follows:

• For a vertex Vi loaded and locked in the cache, its
execution time Ei is: Ei = Thit * Ii

• For a vertex Vi not loaded in the cache, its
execution time Ei is: Ei = Tmiss + (Thit * Ii)

where Ii is the number of instructions of vertex Vi, Thit
is the execution time of an instruction that is in the
cache, and Tmiss is the time to transfer a block from
main memory to the temporal buffer. Vertex execution
time can be directly used in the c-cfg expression in
order to obtain the WCET of the task, obtaining an
upper bound value, since execution time is now
independent of cache.

Since each task must load and lock the selected
instructions before it can begin execution, the time
needed to load and lock cache contents must be added
to the WCET of the task. This time, called
time_to_load, is machine dependent, and is calculated
in the experimental results section.

4. SELECTING BLOCKS TO LOAD AND LOCK
IN THE CACHE.

Randomly loading and locking instructions in the cache
offers predictability but does not guarantee good task
response time. In order to reach both goals, a
predictable cache and a like-cache performance,
instructions to be loaded must be carefully selected, in
search for the best scenario. This scenario is a set of
main memory blocks locked in the cache that provides
the minimum possible execution time, thus providing
the minimum possible response time for a set of tasks.

Genetic algorithms (Goldberg, 1989), performing a
randomly-directed search, can be used in this problem,
finding a sub-optimal solution within an acceptable
computational time. The proposed algorithm provides

the set of main memory blocks, an estimation of the
WCET of each task executed in a locked cache with the
set of blocks loaded and locked, and the response time
of all tasks taking into account the WCET estimated
using the locking cache. The genetic algorithm used in
this work is the evolution of a previous version
presented by Martí, et al. (2001). The main
characteristics of the new algorithm are described
below:

Each block can be locked or not in the cache. An
individual represents, in a single chromosome, the state
of all blocks of all tasks in the system, where a
chromosome is a set of genes. Each gene of one bit size
represents the block state. The population is a set of
individuals. The fitness function is the weighted
average of the response task considering the state –
locked or not- of the blocks. Task response time is
calculated using the CRTA and the WCET expressions
described in previous section.

The existence of invalid individuals (number of locked
blocks greater than cache size) precludes the use of
direct probability setting as function of fitness value in
order to perform crossover. This way, individuals are
arranged according to their validity degree, considering
both the number of locked blocks and the fitness value
to arrange both valid and non-valid individuals. Once
all individuals are well arranged, selection probability
for crossover is set as function of position. This allows
including for crossover, with low probability, non-valid
individuals that help to increase the variability of the
algorithm.

Crossover is performed by randomly choosing a gene
that divides the individual into two parts, and by
exchanging the parts of two individuals, creating two
new individuals. Mutation, on a gene-basis, is applied
to each new individual, and is applied for each task into
the individual. Also, mutation may exchange locked
blocks in order to guarantee that a direct-mapped
locking cache is used. A new population is created with
the individuals obtained from crossover and mutation,
and the process is repeated for a previously defined
number of times. For the accomplished experiments
presented further in this paper, the number of iterations
is established in 5000, the population is formed with
200 individuals, crossover probability is 0.6, and
mutation probability is established in 0.001.

The genetic algorithm simultaneously solve the
problem of block selection and schedulability analysis,
since the response time values obtained from the
genetic algorithm are an upper bound of the task
response time, and can therefore be compared with task
deadlines to validate the system schedulability.

5. EXPERIMENTAL RESULTS

Experimental results must show if the proposed use of
locking caches makes the system predictable, and if the
performance loss (if any) is reasonable. To make
experiments, the SPIM tool (Patterson and Hennessy,



1994), a MIPS R2000 simulator, is used. The SPIM
does not include neither cache nor multitask, so
modifications to include an instruction cache,
multitasking (simulated and controlled by the simulator
and not by the O.S.) and to obtain execution times has
been made to the original version of SPIM. Since this
simulator does not include any architectural
improvement, cache effects can be analysed without
interference. The routine to load and lock the
instructions of each task is also incorporated in the
simulator, but its execution time is added to the calling
task. The assembly code for this routine is shown in
Figure 4. The routine is never loaded in the cache, but
profits from the temporal buffer. The execution time of
this routine is estimated in 46 cycles for each block to
be loaded (under terms described further), plus a
constant of 12 cycles. This value is accounted in the
genetic algorithm during WCET and Response Time
estimation.

flush $0,$0,$0 # invalidate and unlock the cache
ini:   addi $1,$1,-1 # assume register 1 contains number of

blocks to be locked
lw $3,0($2) # assume register 2 contains initial

address of TLT
lab $3 # Load memory block addressed by

register 3
addi $2,$2,4 # Point to the next TLT entry
bne $0,$1,ini
nop
lock # Lock the cache
jr $31 # Return from routine

Figure 4. Load and lock function for a MIPS R2000-
like processor

Tasks used in experiments are artificially created to
stress the proposed cache scheme. Main parameters of
task are defined, such as the number of loops and
nesting level, the size of tasks, the size of loops, the
number of if-then-else structures and their respective
sizes. A simple tool is used to create tasks. Task period
is hand-defined to make the system schedulable, and
the deadline is equal to period. Finally, the priority is
assigned by Rate Monotonic (the shorter the period the
higher the priority). The workload of any task may be a
single loop, if-then-else structures, nested loops,
streamline code, or any mix of these. The size of a task
code may be large (up to 64 Kb) or short (lower than
1Kb).

Each experiment is composed of a set of tasks, ranging
from three to eight tasks. Each experiment is simulated
using direct-mapped, two-set associative, four-set
associative and full associative cache, with cache sizes
from 1 Kbyte to 64 Kbytes. For all cases, line size is 16
bytes (four instructions). Execution of any instruction
from main memory is 10 cycles, and execution of any
instruction from cache (or temporal buffer) is 1 cycle.
For each experiment, the response time of each task is
estimated using the genetic algorithm, and simulated in
a locking cache using the blocks selected by the genetic
algorithm.

Figure 5 presents the error between the response time
of every task; either estimated by the genetic algorithm

or simulated using a locking cache. Experiments collect
more than 700 executions. Each bar represents the
number of tasks with an estimated error that lies in the
interval of the x-axis. This figure shows that the
proposed technique is conservative, since the estimated
response time is always larger than the simulated one.
Figure 6 shows the accumulated frequency:
accumulated number of tasks for the given error
between simulated and estimated response time using a
locking cache. Axis-y value is the percentage of tasks
with an error lower than axis-x value. It can be
observed that the estimated response time is tight:
around 60% of the cases present an error below 2%,
and 90% of them present an error below 9%.
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Figure 5. Error between simulated and estimated task
response time using a locking cache.
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Task1

Task2

Task3
����������

��������������
������

����
��������
����

Task begins execution.

Locking instructions.

Task execution.

Task ends execution.

���

Task activation.

Figure 7. Example of preemption without cache refill
penalty.

Error between estimated and simulated response time is
mainly due to the conservative approach of CRTA.
CRTA equation considers that all preemptions occur
during task execution, since this is the worst case
scenario. This way, the time to reload cache contents is
added to the response time for each possible
preemption. But in fact, a task may suffer a preemption
after activation and before execution. In this case, no
time to reload cache contents is needed, but the CRTA
equation does not differentiate between these
preemptions. Figure 7 illustrates an example where
three tasks are activated within the same time instant.
Task 3 suffers two preemptions but does not need to
reload cache contents, since its execution has not yet
begun.



Regarding the performance of the locking cache, Figure
8 compares the task response time with or without
locking cache. Conventional cache uses the mapping
function that obtains the best performance for each
case. The figure depicts the performance ratio:
simulation of actual task response time with the best
cache arrangement, versus the estimated task response
time obtained by the genetic algorithm with a locking
cache. Tasks are grouped according to this ratio. Figure
9 draws the accumulative values of the previous figure.
For around 45% of the tasks, the response time is equal
or better using locking cache, and near of 70% present
a performance ratio over 0,9.
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Figure 8. Task performance ratio obtained when using
locking cache. Each bar represents the number of
tasks with performance ratio that lies in the interval
of the x-axis.
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Figure 9. Accumulative task performance ratio when
using locking cache. Axis-y value is the percentage
of tasks with performance ratio greater than axis-x
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6. CONCLUSIONS

This work presents a novel technique that uses locking
caches in the context of real-time systems.
Furthermore, algorithms to analyse the proposed
system are described. Compared to other known
techniques used to achieve cache predictability in these
systems, this solution completely eliminates intrinsic
cache interference, and gives a bounded value of
extrinsic cache interference, providing an accurate
response time estimation. This predictability is reached
with no loss of performance for around 70% of the
experiments.

The benefits of a predictable cache are basically two:
first, it is practical, since the designer can easily
analyse the system to obtain schedulability. Second, the
architecture is compatible with other techniques used to
improve performance, such as segmentation, thus

precluding the consideration of the complex
interrelations among these techniques and the cache.
The hardware resources required to implement this
scheme are available in some contemporary processors.
To obtain the best results, some minor changes might
be introduced. These changes do not present difficulties
in terms of technical complexity and production.

An algorithm to select cache contents is presented. This
selection delivers the best performance. The algorithm
also calculates each task's WCET and response time.
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