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Abstract

Current microprocessors are based in complex designs,
integrating different components on a single chip, such as
hardware threads, processor cores, memory hierarchy or
interconnection networks. The permanent need of evalu-
ating new designs on each of these components motivates
the development of tools which simulate the system working
as a whole. In this paper, we present the Multi2Sim simu-
lation framework, which models the major components of
incoming systems, and is intended to cover the limitations
of existing simulators. A set of simulation examples is also
included for illustrative purposes.

1 Introduction

The evolution of microprocessors, mainly enabled by
technology advances, has led to complex designs that com-
bine multiple physical processing units in a single chip.
These designs provide to the operating system (OS) the
view of having multiple processors, and thus, different soft-
ware processes can be scheduled at the same time.

This processor model consists of three major compo-
nents: the microprocessor core, the cache hierarchy, and
the interconnection network. A design improvement on any
of these components will result in a performance gain over
the whole system. Therefore, current processor architecture
trends bring a lot of opportunities for researchers to inves-
tigate novel microarchitectural proposals. Below, some de-
sign issues on these components are drawn.

Concerningprocessor cores, deep and wide pipelines
have been designed, aimed at exploiting the high amount of
instruction level parallelism (ILP) present in current work-
loads. On the other hand, thread level parallelism (TLP)
enables to exploit additional sources of independent in-
structions to increase processor resources utilization. This
idea, jointly with an overcome of hardware constraints, re-

sulted in chip multiprocessors (CMPs), which include vari-
ous cores in a single chip [1].

With respect tomemory hierarchy, its design is a ma-
jor concern in current and incoming microprocessors, since
long memory latencies act frequently as a performance
bottleneck. Current on-chip parallel processing models
provide new cache access patterns and offer the possibil-
ity of either replicating or sharing caches among process-
ing elements. This fact rises the need to evaluate trade-
offs between memory hierarchy configuration and proces-
sor cores/threads structure.

Finally, interconnection networks (or interconnects)
serve as communication medium for processor components
(mainly processor cores). In an environment where caches
from different processors share memory blocks, the inter-
connect is in charge of transmitting coherence messages
generated by the cache controllers. Research in this field
tries to increase network performance by focusing on new
topologies, switching and flow control mechanisms, routing
algorithms or fault tolerance techniques.

In this paper we present Multi2Sim, which integrates
processor cores, memory hierarchy and interconnection net-
work in a tool that enables their evaluation. The rest of
this paper is organized as follows. Section 2 presents an
overview of existing processor simulators. Section 3 de-
scribes the Multi2Sim structure, while Section 4 discusses
the integrated features to support multithreading and multi-
core simulation. Examples including simulation results are
shown in Section 5. Finally, Section 6 presents some con-
cluding remarks.

2 Related Work

Multiple simulation environments aimed at evaluating
computer architecture proposals have been developed. The
most widely used simulator in recent years has been Sim-
pleScalar [2], which models an out-of-order superscalar
processor. Lots of extensions have been applied to Sim-



pleScalar to model in a more accurate manner certain as-
pects of superscalar processors. For example, the HotLeak-
age simulator [3] quantifies leakage energy consumption.

SimpleScalar is quite difficult to extend to model new
parallel microarchitectures without significantly changing
its structure. In spite of this fact, various SimpleScalar ex-
tensions to support multithreading have been implemented,
e.g. SSMT [4], M-Sim [5], or SMTSim [6], but they have
the limitation of only executing a set of sequential work-
loads and implementing a fixed resource sharing strategy
among threads.

Multithread and multicore extensions have been also ap-
plied to the Turandot simulator [7] [8], which models a
PowerPC architecture and has been also used with power
measurement aims (PowerTimer [9]). Turandot extensions
to parallel microarchitectures are mostly cited (e.g., [10])
but not publicly available.

Both SimpleScalar and Turandot are application-only
tools, which directly simulate the behaviour of an applica-
tion. Such tools have the advantage of isolating the work-
load execution, so statistics are not affected by the simula-
tion of additional software. The tool proposed in this paper
can also be classified as an application-only simulator.

In contrast to the application-only simulators, a set of
so-called full-system simulators are available. Such tools
are able to boot an unmodified operating system and appli-
cations run at the same time over it. Although this model
provides higher simulation power, it involves a huge com-
putational load and sometimes unnecessary simulation ac-
curacy.

Simics [11] is an example of generic full-system simu-
lator, commonly used for multiprocessor systems simula-
tion, but unfortunately not freely available. A variety of
Simics derived tools has been implemented for specific re-
search purposes in this area. This is the case of GEMS [12],
which introduces a timing simulation module to model a
complete processor pipeline and a memory hierarchy sup-
porting cache coherence. However, GEMS provides low
flexibility of modelling multithreaded designs and it inte-
grates no interconnection network model.

An important feature included in some processor simu-
lators is thetiming-first approach, provided by GEMS and
adopted in Multi2Sim. On such a scheme, a timing module
traces the state of the processor pipeline while instructions
traverse it, possibly in a speculative state. Then, a func-
tional module is called to actually execute the instructions,
so the correct execution paths are always guaranteed by a
previously developed robust simulator. Thetiming-firstap-
proach confers efficiency, robustness, and the possibilityof
performing simulations on different levels of detail. Our
proposal adopts thetiming-firstsimulation with a functional
support that, unlike GEMS, need not simulate a whole oper-
ating system, but is still capable of executing parallel work-

loads, with dynamic threads creation.
The last cited simulator is M5 [13], which provides

support for out-of-order SMT-capable CPUs, multiproces-
sors and cache coherency, and runs in both full-system and
application-only modes. The limitations lie once again in
the low flexibility of multithreaded pipeline designs.

3 Basic simulator description

Multi2Sim [14] has been developed integrating some
significant characteristics of popular simulators, such as
separate functional and timing simulation, SMT and mul-
tiprocessor support and cache coherence. Multi2Sim is an
application-only tool intended to simulate final MIPS32 ex-
ecutable files. With a MIPS32 cross-compiler (or a MIPS32
machine) one can compile his own program sources, and
test them under Multi2Sim. This section deals with the
process of starting and running an application in a cross-
platform environment, and describes briefly the three im-
plemented simulation techniques (functional, detailed and
event-driven simulation).

3.1 Program Loading

Program loading is the process in which an executable
file is mapped into different virtual memory regions of a
new software context, and its register file and stack are ini-
tialized to start execution. In a real machine, the operating
system is in charge of these actions, but an application-only
tool should manage program loading during its initializa-
tion.

Executable File Loading. The executable files output
by gcc follow the ELF (Executable and Linkable Format)
specification. An ELF file is made up of a header and a set
of sections. Some Linux distributions include the library
libbfd, which provides types and functions to list the sec-
tions of an ELF file and track their main attributes (starting
address, size, flags and content). When the flags of an ELF
section indicate that it isloadable, its contents are copied
into memory after the corresponding starting address.

Program Stack. The next step of the program loading
process is to initialize the process stack. The aim of the
program stack is to store function local variables and pa-
rameters. During the program execution, the stack pointer
($sp register) is managed by the own program code. How-
ever, when the program starts, it expects some data in it,
namely the program arguments and environment variables,
which must be placed by the program loader.

Register File. The last step is the register file initializa-
tion. This includes the$sp register, which has been pro-
gressively updated during the stack initialization, and the



PC andNPC registers. The initial value of thePC register
is specified in the ELF header of the executable file as the
program entry point. TheNPC register is not explicitly de-
fined in the MIPS32 architecture, but it is used internally by
the simulator to handle the branch delay slot.

3.2 Simulation Model

Multi2Sim uses three different simulation models, em-
bodied in different modules: a functional simulation engine,
a detailed simulator and an event-driven module —the lat-
ter two perform the timing simulation. To describe them,
the termcontextwill be used hereafter to denote a software
entity, defined by the status of a virtual memory image and a
logical register file. In contrast, the termthreadwill refer to
a processor hardware entity comprising a physical register
file, a set of physical memory pages, a set of entries in the
pipeline queues, etc. The three main simulation techniques
are described next.

Functional Simulation, also calledsimulator kernel. It
is built as an autonomous library and provides an interface
to the rest of the simulator. This engine does not know
of hardware threads, and owns functions to create/destroy
software contexts, perform program loading, enumerate ex-
isting contexts, consult their status, execute machine in-
structions and handle speculative execution. The supported
machine instructions follow the MIPS32 specification [15]
[16]. This choice was basically motivated by a fixed instruc-
tion size and formats, which enable a simple instruction de-
coding.

An important feature of the simulation kernel, inherited
from SimpleScalar [2], is the checkpointing capability of
the implemented memory module and register file, think-
ing of an external module that needs to implement specula-
tive execution. In this sense, when a wrong execution path
starts, both the register file and memory status are saved,
reloading them on the misprediction detection.

Detailed Simulation. The Multi2Sim detailed simula-
tor uses the functional engine to perform atiming-first [12]
simulation: in each cycle, a sequence of calls to the kernel
updates the state of existing contexts. The detailed simu-
lator analyzes the nature of the recently executed machine
instructions and accounts the operation latencies incurred
by hardware structures.

The main simulated hardware consists of pipeline struc-
tures (stage resources, instruction queue, load-store queue,
reorder buffer...), branch predictor (modelling a combined
bimodal-gsharepredictor), cache memories (with variable
size, associativity and replacement policy), memory man-
agement unit, and segmented functional units of config-
urable latency.

Event-Driven Simulation. In a scheme where func-

tional and detailed simulation are independent, the imple-
mentation of the machine instructions behaviour can be cen-
tralized in a single file (functional simulation), increasing
the simulator modularity. In this sense, function calls that
activate hardware components (detailed simulation) have an
interface that returns the latency required to complete their
access.

Nevertheless, this latency is not a deterministic value in
some situations, so it cannot be calculated when the func-
tion call is performed. Instead, it must be simulated cycle by
cycle. This is the case of interconnects and caches, where an
access can result in a message transfer, whose delay cannot
be computeda priori, justifying the need of an independent
event-driven simulation engine.

4 Support for Multithreaded and Multicore
Architectures

This section describes the basic simulator features that
provide support for multithreaded and multicore processor
modelling. They can be classified in two main groups: those
that affect the functional simulation engine (enabling theex-
ecution of parallel workloads) and those which involve the
detailed simulation module (enabling pipelines with various
hardware threads on the one hand, and systems with several
cores on the other).

4.1 Functional simulation: parallel work-
loads support

The functional engine has been extended to support par-
allel workloads execution. In this context, parallel work-
loads can be seen as tasks that dynamically create child
processes at runtime, carrying out communication and syn-
chronization operations. The supported parallel program-
ming model is the one specified by the widely used POSIX
Threads library (pthread) shared memory model [17].

In a multithreaded environment, some studies suggest
using a set of sequential workloads [18]. The reason is
that multiple resources are shared among hardware threads,
and processor throughput can be evaluated more accurately
when no contention appears due to communication between
contexts. In contrast, multicore processor pipelines are fully
replicated, and an important contention point is the inter-
connection network. The execution of multiple sequential
workloads exhibits only some interconnect activity in form
of L2-L1 cache transfers, but no coherence actions can oc-
cur between processes having disjoint memory maps. Thus,
in order to evaluate multicore processors, it makes sense
to support and run parallel workloads with shared memory
locations, whose distributed access can stress the intercon-
nection network.



Actual parallel workloads require special hardware sup-
port (machine instructions), as well as low level software
support (system calls) that enable threads spawning, syn-
chronization and termination. Each of these issues are de-
scribed below, jointly with a brief description of the POSIX
threads management:

Instruction set support. When the processor hard-
ware supports concurrent threads execution, the parallel
programming requirement that directly affects its architec-
ture is the existence of critical sections, which cannot be ex-
ecuted simultaneously by more than one thread. CMPs or
multithreaded processors must stall the activity of a hard-
ware thread when it tries to enter a critical section occupied
by other thread.

The MIPS32 approach implements the mutual exclusion
mechanism by means of two machine instructions (LL and
SC), defining the concept of RMW (read-modify-write) se-
quence [16]. An RMW sequence is a set of instructions,
embraced by a pairLL-SC that run atomically on a multi-
processor system. The cited machine instructions do not
enforce an RMW sequence, but the output value ofSC in-
forms of the RMW success or failure.

Operating system support. Tracing the execution of
a parallel workload, the operating system support required
by pthread is formed of system calls i) to spawn/destroy
a thread (clone, exit group), ii) to wait for child
threads (waitpid), iii) to communicate and synchronize
threads with system pipes (pipe, read, write, poll)
and iv) to wake up suspended threads using system signals
(sigaction, sigprocmask, sigsuspend, kill).

POSIX Threads parallelism management. Applica-
tions programmed withpthread can be simulated without
changes using Multi2Sim. This library introduces user code
which handles parallelism by means of the described sub-
set of machine instructions and system calls. However, the
fact of having thread management code mingled with ap-
plication code must be taken into account, as it constitutes
a certain overhead which could affect final results. Further
details on this consideration can be found in [14].

4.2 Detailed simulation: Multithreading
support

Multi2Sim supports a set of parameters that specify how
stages are organized in a multithreaded design. Stages can
be shared among threads or private per thread [19] (except
the executestage, which is shared by definition of multi-
thread). Moreover, when a stage is shared, there must be an
algorithm which schedules a thread every cycle on the stage.
The modelled pipeline is divided into five stages, described
below.

Figure 1. Examples of pipeline organizations

The fetch stage takes instructions from the L1 instruc-
tion cache and places them into an IFQ (instruction fetch
queue). Thedecode/renamestage takes instructions from
an IFQ, decodes them, renames their registers and assigns
them a slot in the ROB (reorder buffer) and IQ (instruction
queue). Then, theissuestage consumes instructions from
the IQ and sends them to the corresponding functional unit.
During theexecutionstage, the functional units operate and
write their results back into the register file. Finally, the
commitstage retires instructions from the ROB in program
order. This architecture is analogous to the one modelled
by the SimpleScalar tool set [2], but uses a ROB, an IQ (in-
struction queue) and a physical register file, instead of the
RUU (register update unit).

Figure 1 illustrates two possible pipeline organizations.
In a) all stages are shared among threads, while in b) all
stages (exceptexecute) are replicated as many times as
supported hardware threads. Multi2Sim allows to eval-
uate different stage sharing strategies, as well as differ-
ent algorithms that schedule stage resources in each cy-
cle. Depending on the stages sharing and thread selection
policies, a multithread processor can be classified as fine-
grain (FGMT), coarse-grain (CGMT) or simultaneous mul-
tithread (SMT).

A FGMT processor switches threads on a fixed schedule,
typically on every processor cycle. In contrast, a CGMT
processor is characterized by a thread switch induced by a
long latency operation or a thread quantum expiration. Fi-
nally, an SMT processor enhances the previous ones with
a more aggressive instruction issue policy, which is able to
issue instructions from different threads in a single cycle.
The simulator parameters that specify the sharing strategy
of pipeline stages among threads, and thus the kind of mul-
tithreading, are summarized in Table 1. Again, [14] gives a
detailed description of all possible values these parameters
may take.



Table 1. Combination of parameters for differ-
ent multithread configurations

FGMT CGMT SMT

fetch kind timeslice switchonevent timeslice/

multiple

fetch priority - - equal/icount

decode kind shared/

timeslice/

replicated

shared/

timeslice

shared/

timeslice/

replicated

issue kind timeslice shared/

timeslice

replicated

retire kind timeslice timeslice timeslice/

replicated

Figure 2. Evaluated cache distribution de-
signs

4.3 Detailed simulation: Multicore sup-
port

A multicore simulation environment is basically
achieved by replicating the data structures that represent
a single processor core. The zone of shared resources in
a multicore processor starts with the memory hierarchy.
When caches are shared among cores, some contention can
exist when they are accessed simultaneously. In contrast,
when they are private per core, a coherence protocol (e.g.
MOESI [20]) is implemented to guarantee memory consis-
tency. Multi2Sim implements in its current version a split-
transaction bus as interconnection network, extensible to
any other topology of on-chip networks.

The number of interconnects and their location vary de-
pending on the sharing strategy of data and instruction
caches. Figure 2 shows three possible schemes of sharing
L1 and L2 caches (t = private per thread,c = private per
core,s= shared), and the resulting interconnects for a dual-
core dual-thread processor.

5 Results

This section presents some simulation experiments us-
ing Multi2Sim, illustrating the simulator application on one

hand, and checking its correctness on the other. These ex-
periments i) test different multithread pipeline configura-
tions, ii) explore different bus widths and iii) trace the net-
work traffic executing a parallel workload. In all cases, the
simulated machine includes 64KB separate L1 instruction
and data caches, 1MB unified and shared among threads
L2 cache, private physical register files of 128 entries, and
fetch, decode, issue and commit width of 8 instructions per
cycle.

i) Multithread Pipeline Organizations . Figure 3 shows
the results for four different multithreaded implementa-
tions: FGMT, CGMT, SMT with equal thread priorities
and SMT with ICOUNT (giving priority to those threads
with less instructions in the pipeline [21]). Figure 3a shows
the average number of instructions issued per cycle, while
Figure 3b represents the global IPC (i.e., the sum of the
IPCs achieved by the different threads), executing bench-
mark 176.gccfrom the SPEC2000 suite with one instance
per hardware thread, and varying the number of threads.

Results are in accordance with the ones published by
Tullsen et al [18], where CGMT and FGMT processors per-
forms slightly better when the number of threads increases
up to four threads. Besides, an SMT processor shows not
only higher performance for any number of threads, but also
higher scalability, both with equal and variable thread pri-
orities.

ii) Bus Width Evaluation . This experiment shows how
the bus width impacts on processor performance, resulting
in different number of contention cycles during data trans-
fers. For this test, we assume MOESI requests of 8 bytes
and cache blocks of 64 bytes, so network messages can have
either 8 bytes (only a MOESI request) or 72 bytes (MOESI
request + block data). The executed workload isfft, which
belongs to the SPLASH2 suite, a set of parallel benchmarks.

Figure 4 represents the average contention cycles per
transfer. Because no message larger than 72 bytes will be
transferred, at least a 72-byte bus width is required to send
any message in a single bus cycle and minimize contention.
However, results show that a bus width more than three
times smaller provides (for this workload) almost the same
benefits.

iii) Interconnect Traffic Evaluation . This experiment
shows the activity of the interconnection network during the
execution of thefft benchmark with the same processor con-
figuration described above, for a 16-byte bus width. Figure
5a represents the fraction of total bus bandwidth used in
the network connecting the L1 caches and the common L2
cache, taking intervals of10

4 cycles. Figure 5b represents
the same metric referring to the interconnect between L2
and main memory (MM). As one can see, traffic distribu-
tion is quite irregular, showing some peaks of interconnect
activity at some execution intervals.
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Figure 3. Issue rate and IPC with different
multithreaded designs

6 Conclusions

In this paper, we presented Multi2Sim, a simulation
framework that integrates important features of existing
simulators and extends them to provide additional function-
ality. Regarding the features adopted from other tools, we
can cite the basic pipeline architecture (SimpleScalar), the
timing first simulation (Simics-GEMS) or the support to
cache coherence protocols.

Among the extensions of Multi2Sim, we find the sim-
ulation of sharing strategies of pipeline stages, memory hi-
erarchy configurations, multicore-multithread combinations
and an integrated interface with the on-chip interconnection
network. These features make Multi2Sim suitable for the
evaluation of state-of-the-art processors, covering hot top-
ics in the computer architecture field. In this paper, we
showed some guidance examples on how to use these sim-
ulator characteristics.

The source code of Multi2Sim is written in C and can be
downloaded at [14].
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