
1

A Complexity-Effective Out-of-Order

Retirement Microarchitecture

S. Petit, J. Sahuquillo, P. López, R. Ubal, and J. Duato

Department of Computer Engineering (DISCA)

Technical University of Valencia, Spain

Abstract

Current superscalar processors commit instructions in program order by using a reorder buffer

(ROB). The ROB provides support for speculation, precise exceptions, and register reclamation. Howe-

ver, committing instructions in program order may lead to significant performance degradation if a long

latency operation blocks the ROB head.

Several proposals have been published to deal with this problem. Most of them retire instructions

speculatively. However, as speculation may fail, checkpoints are required in order to rollback the pro-

cessor to a precise state, which requires both extra hardware to manage checkpoints and the enlargement

of other major processor structures, which in turn might impact the processor cycle.

This paper focuses on out-of-order commit in a nonspeculative way, thus avoiding checkpointing.

To this end, we replace the ROB with a validation buffer (VB) structure. This structure keeps dispatched

instructions until they are nonspeculative or mispeculated, which allows an early retirement. By doing so,

the performance bottleneck is largely alleviated. An aggressive register reclamation mechanism targeted

to this microarchitecture is also devised.

As experimental results show, the VB structure is much more efficient than a typical ROB since,

with only 32 entries, it achieves a performance close to an in-order commit microprocessor using a

256-entry ROB.

I. INTRODUCTION

Current high-performance microprocessors execute instructions out-of-order to exploit in-

struction level parallelism (ILP). To support speculativeexecution, provide precise exceptions,

and register reclamation, a reorder buffer (ROB) structureis used [1]. After being decoded,

instructions are inserted in program order in the ROB, wherethey are kept while being executed

DRAFT

2

and until retired at the commit stage. The key to support speculation and precise exceptions is

that instructions leave the ROB also in program order, that is, when they are the oldest ones in

the pipeline. Consequently, if a branch is mispredicted or an instruction raises an exception, there

is a guarantee that, when the offending instruction reachesthe commit stage, all the previous

instructions have already been retired and none of the subsequent ones have done it. Therefore,

to recover from that situation, all the processor has to do isto abort the latter ones.

This behavior is conservative. When the ROB head is blocked,for instance, by a long latency

instruction (e.g., a load that misses in the L2), subsequentinstructions cannot release their ROB

entries. This happens even if these instructions are independent from the long latency one and

they have been completed. In such a case, since the ROB has a finite size, as long as instruction

decoding continues, the ROB may become full, thus stalling the processor for a valuable number

of cycles. Register reclamation is also handled in a conservative way because physical registers

are mapped for longer than their useful lifetime. In summary, both the advantages and the

shortcomings of the ROB come from the fact that instructionsare committed in program order.

A naive solution to address this problem is to enlarge the ROBsize to accommodate more

in flight instructions. However, as ROB-based microarchitectures serialize the release of some

critical resources at the commit stage (e.g., physical registers or store queue entries), these

resources should be also enlarged. This resizing increasesthe cost in terms of area and power,

and it might also impact the processor cycle [2].

To overcome this drawback, some solutions that commit instructions out of order have been

published. These proposals can be classified into two approaches depending on whether instruc-

tions are speculatively retired or not. Some proposals falling into the first approach, like [3],

allow the retirement of the instruction obstructing the ROBhead by providing a speculative value.

Others, like [4] or [5], replace the normal ROB with alternative structures to speculatively retire

instructions out of order. As speculation may fail, these proposals need to provide a mechanism

to recover the processor to the correct state. To this end, the architectural state of the machine is

checkpointed. Again, this implies the enlargement of some major microprocessor structures, for

instance, the register file [5] or the load/store queue [4], because completed instructions cannot

free some critical resources until their associated checkpoint is released.

Regarding the nonspeculative approach, Bell and Lipasti [6] propose to scan a few entries of

the ROB, as many as the commit width, and those instructions satisfying certain conditions are

DRAFT

3

allowed to be retired. None of these conditions imposes an instruction to be the oldest one in

the pipeline to be retired. Hence, instructions can be retired out of program order. However, in

this scenario, the ROB head may become fragmented after the commit stage, and thus it must

be collapsed for the next cycle. Collapsing a large structure is costly in time and could adversely

impact the microprocessor cycle, which makes this proposalunsuitable for large ROB sizes. In

addition, as experimental results will show, this proposalhas performance constraints due to the

limited number of instructions that can be scanned at the commit stage.

In this paper we propose the Validation Buffer (VB) microarchitecture, which is also based on

the nonspeculative approach. This microarchitecture usesa FIFO-like table structure analogous

to the ROB. The aim of this structure is to provide support forspeculative execution, exceptions,

and register reclamation. While in the VB, instructions arespeculatively executed. Once all the

previous branches and previous exceptions are resolved, the execution mode of the instructions

changes either to nonspeculative or mispeculated. At that point, instructions are allowed to leave

the VB. Therefore, instructions leave the VB in program order but, unlike the ROB, they do not

remain in the VB until retirement. Instead, they remain in the VB only until the execution mode

of such instruction is resolved, either nonspeculative or mispeculated. Consequently, instructions

leave the VB at different stages of their execution: completed, issued, or just decoded and

not issued. In particular, a long latency memory reference instruction could leave the VB as

soon as its memory address is successfully calculated and nopage fault has been risen. This

paper discusses how the VB microarchitecture works, focusing on how it deals with register

reclamation, speculative execution, and exceptions.

The main contribution of this paper is the proposal of an aggressive out-of-order retirement

microarchitecture without checkpointing. This microarchitecture decouples instruction tracking

for execution and for resource reclamation purposes. The proposal clearly outperforms the

existing one [6] that, like ours, does not perform checkpoints, since it achieves more than twice

its performance using smaller VB/ROB sizes. On the other hand, register reclamation cannot

be handled as done in current microprocessors [7], [8], [9] because no ROB is used. Therefore,

we devise an aggressive register reclamation method targeted to this architecture. Experimental

results show that the VB microarchitecture increases the ILP while requiring less complexity in

some major critical resources like the register file and the load/store queue.

This paper presents the VB microarchitecture and its performance evaluation results. Indeed,

DRAFT

4

this paper analyzes in a deep and extensive way, complexity-performance tradeoffs, including

two main studies: i) an analysis of the complexity of the major processor structures required to

achieve a given performance level, and ii) an analysis of theimpact on performance of different

pipeline widths. Results show that the VB microarchitecture performs better using less resources,

and that it can outperform in-order retirement architectures even when using narrower pipeline

widths. The latter result brings important implications, since the pipeline width has a strong

impact on processor complexity.

The remainder of this paper is organized as follows. SectionII describes the VB microarchi-

tecture. Section III explores the potential of the proposedmicroarchitecture and its performance

in a modern processor. Section IV analyzes the performance obtained when varying the com-

plexity requirements. Section V summarizes the related work. Finally, Section VI presents some

concluding remarks.

II. THE VB M ICROARCHITECTURE

The commit stage is typically the latest one of the microarchitecture pipeline. At this stage, a

completed instruction updates the architectural machine state, frees the used resources and exits

the ROB. The mechanism proposed in this paper allows instructions to be retired early, as soon

as it is known that they are nonspeculative. Notice that these instructions may not be completed.

Once they are completed, they will update the machine state and free the occupied resources.

Therefore, instructions will exit the pipeline in an out-of-order fashion.

The necessary conditions to allow an instruction to be committed out-or-order are [6]: i)

the instruction is completed; ii) WAR hazards are solved (i.e., a write to a particular register

cannot be permitted to commit before all prior reads of that architected register have been

completed); iii) previous branches are successfully predicted; iv) none of the previous instructions

is going to raise an exception, and v) the instruction is not involved in memory replay traps. The

first condition is straightforwardly met by any proposal at the writeback stage. The last three

conditions are handled by the Validation Buffer (VB) structure, which replaces the ROB and

contains the instructions whose conditions are not known yet. The second condition is fulfilled

by the devised register reclamation method (see Section II-A).

The VB deals with the speculation-related conditions (iii,iv and v) by decomposing code

into fragments orepochs. The epoch boundaries are defined by instructions that may initiate

DRAFT

5

an speculative execution, referred to asepoch initiators(e.g., branches or potentially exception

raiser instructions). Only those instructions whose previous epoch initiators have completed and

confirmed their prediction are allowed to modify the machinestate. We refer to these instructions

asvalidated instructions.

Instructions reserve an entry in the VB when they are dispatched, that is, they enter in program

order in the VB. Epoch initiator instructions are marked as such in the VB. When an epoch

initiator detects a mispeculation, all the following instructions are canceled. When an instruction

reaches the VB head, if it is an epoch initiator and it has not completed execution yet, it waits.

When it completes, it leaves the VB and updates machine state, if any. Non epoch-initiator

instructions that reach the VB head can leave it regardless of their execution state. That is, they

can be either dispatched, issued or completed. However, only those not canceled instructions (i.e.,

validated) will update the machine state. On the other hand,canceled instructions are drained to

free the resources they occupy (see Section II-B).

Notice that when an instruction leaves the VB, if it is already completed, it is not consuming

execution resources in the pipeline. Thus, it is analogous to a normal retirement when using the

ROB. Otherwise, unlike the ROB, the instruction isretired from the VB but it remains in the

pipeline until it is completed.

The proposed microarchitecture can support a wide range of epochs initiators. At least, epoch

initiators according to the three speculative related conditions are supported. Therefore, branches

and memory reference instructions (i.e., the address calculation part) act as epoch initiators. In

other words, branch speculation, memory replay traps (see Section II-D) and exceptions related

with address calculation (e.g., page faults, invalid addresses) are supported by design.

It is possible to include more instructions in the set of epoch initiators. For instance, in order

to support precise floating-point exceptions, all floating-point instructions should be included

in this set. As instructions are able to leave the VB only whentheir epoch initiators validate

their epoch, a high percentage of epoch initiators might reduce the performance benefits of the

VB microarchitecture. User definable flags can be used to enable or disable support for precise

exceptions. If the corresponding flag is enabled, the instruction that may generate a given type

of exception will force a new epoch when it is decoded. In fact, a program could dynamically

enable or disable these flags during its execution. For instance, it can be enabled when the

compiler suspects that an arithmetic exception may be raised.

DRAFT

6

The design and performance evaluation of a VB-based multiprocessor system is out of the

scope of this paper. Nevertheless, as multicore processorsare becoming an important segment

of the market, we briefly discuss how the proposed microarchitecture could be adapted for sup-

porting stricter memory consistency models, like the sequential memory consistency model [11]

(see Section II-E).

A. Register Reclamation

Typically, modern microprocessors free a physical register when the instruction that renames

the corresponding logical register commits [12]. Then, thephysical register index is placed in

the list that contains the free physical registers available for new producers.

Waiting until the commit stage to free a physical register iseasy to implement but conforms to

a conservative approach; a sufficient condition is that all consumers have read the corresponding

value. Therefore, this method does not efficiently use registers, as they can be mapped for longer

than their useful lifetime. In addition, this method requires keeping track of the oldest instruction

in the pipeline. As this instruction may have already left the VB, this method is unsuitable for

our proposal.

Due to these reasons, we devised a register reclamation strategy based on the counter me-

thod [13], [12] targeted for the VB microarchitecture. The hardware components used in this

scheme, as shown in Figure 1, are:

Frontend Register Alias Table (RATfront). This table maintains the current mapping for

each logical register and is accessed at the rename stage. The table is indexed by the source

logical register to obtain the corresponding physical register identifier. Additionally, each time

a new physical register is mapped to a destination logical register, theRATfront is updated.

Retirement Register Alias Table (RATret). TheRATret table is updated as long as instruc-

tions exit the VB. This table contains a precise state of the register map, as only those validated

instructions leaving the VB are allowed to update it.

Register Status Table (RST). TheRST is indexed by a physical register number and contains

three fields, labeled aspendingreaders, valid remappingandcompleted, respectively. Thepen-

ding readersfield contains the number of decoded instructions that consume the corresponding

physical register, but have not read it yet. This value is incremented as consumers enter the

decode stage, and decremented when they are issued to the execution units. The second and third

DRAFT

7

Fig. 1. VB microarchitecture block diagram.

fields are composed each by a single bit. Thevalid remappingbit is set when the associated

logical register has beendefinitively remapped to a new physical register, that is, when the

instruction that remapped the logical register has left theVB as validated. Finally, thecompleted

bit indicates that the instruction producing its value has completed execution, writing the result

to the corresponding physical register.

With this representation, a free physical registerp can be easily identified when the corres-

ponding entry in theRST contains the triplet{0,1,1}. A 0 in pendingreadersguarantees that

no instruction already in the pipeline will read the contentof p. Next, a 1 invalid remapping

implies that no new instruction will enter the pipeline (i.e., therenamestage) and read the content

of p, becausep has been unmapped by a valid instruction. Finally, a 1 in thecompletedfield

denotes that no instruction in the pipeline is going to overwrite p. These conditions ensure that

a specific physical register can be safely reallocated for a subsequent renaming. On the other

hand, a triplet{0,0,1} denotes a busy register, with no pending readers, not unmapped by a valid

instruction, and appearing as the result of a completed (andvalid) operation.

Table I shows different situations which illustrate the dynamic operation of the proposed

register reclamation strategy in a non-speculative mode, as well as the updating mechanism of

RST , RATfront andRATret tables. In particular, the last row of the table points out the tasks

DRAFT

8

TABLE I

RSTACTIONS FOR DIFFERENT PIPELINE EVENTS.

Event Actions

An instructionI enters therenamestage and has physi-

cal register (p.r.)p as source operand.

RST [p].pending readers + +

I enters therenamestage and reclaims a p.r. to map an

output logical registerl.

Find a free p.r. p and set RST [p] = {0, 0, 0},

RATfront[l] = p.

I is issued and reads p.r.p. RST [p].pending readers −−

I finishes execution, writing the result over p.r.p. RST [p].completed = 1

I exits the VB as validated.l is the logical destination

of I, p.r. p is the current mapping ofl, and p.r.p′ was

the previous mapping ofl.

RST [p′].valid remapping = 1, RATret[l] = p.

to be performed when an instruction leaves the VB as validated. To perform these tasks, the VB

must keep track of: i) the destination logical registerl of the instruction, ii) the physical register

p mapped tol by the instruction, and iii) the physical registerp′ that was previously mapped to

l. Notice that this information is also stored in a typical ROBbased architecture.

B. Recovery Mechanism

The recovery mechanism always involves restoring both theRATfront and theRST tables.

Register Alias Table Recovery. Current microprocessors employ different methods to restore

the renaming information when a mispeculation or exceptionoccurs. The method presented in

this paper uses the two renaming tables,RATfront and RATret, explained above, similarly to

the Pentium 4 [9].

RATret contains a delayed copy of avalidatedRATfront. That is, it matches theRATfront table

at the time the exiting (as valid) instruction was renamed. So, a simple method to implement

the recovery mechanism (restoring the mapping to a precise state) is to wait until the offending

instruction reaches the VB head, and then copyingRATret into RATfront. Alternative imple-

mentations can be found in [4].

Register Status Table Recovery. The recovery mechanism must also undo the modifications

performed by the canceled instructions in any of the three fields of theRST .

Concerning thevalid remappingfield, we describe two possible techniques to restore its values.

DRAFT

9

The first technique squashes from the VB those entries corresponding to instructions younger than

the offending instruction when this one reaches the VB head.At that point, theRATret contains

the physical registers identifiers that we use to restore thecorrect mapping. The remaining

physical registers must be freed. To this end, allvalid remappingentries are initially set to 1

(necessary condition to be freed). Then, theRATret is scanned looking for physical registers

whosevalid remappingentry must be reset.

The second technique relies on the following observation. Only the physical registers that

were allocated (i.e., mapped to a logical register) by instructions younger than the offending

one (i.e., the canceled instructions) must be freed. All these instructions will be inside the VB

when the offending instruction reaches the VB head. Thus, weonly need to drain them from

the VB. These drained instructions must set to 1 thevalid remappingentry of their current

mapping. Notice that in this case, thevalid remappingflag is used to free the registers allocated

by the current mapping, instead of the previous mapping likein normal operation. While the

canceled instructions are being drained, new instructionscan enter the renaming stage, provided

that theRATfront has been already recovered. Therefore, the VB draining can be overlapped

with subsequent new processor operations.

Regarding to thependingreadersfield, it cannot be just reset, as there can already be valid

pending readers in the issue queue. Thus, eachpendingreadersentry must be decremented as

many as the number of canceled pending readers for the corresponding physical register. To

this end, the issue logic must allow to detect those instructions younger than the offending

instruction, that is, the canceled pending readers. This can be implemented by using a bitmap

mask in the issue queue to identify which instructions are younger than a given branch [14]. The

canceled instructions must be drained from the issue queue to correctly handle (i.e., decrement)

their pendingreadersentries. Notice that this logic can be also used to handle thecompleted

field, by enabling a canceled instruction to set the entry of its destination physical register.

Alternatively, it is also possible to simply let the canceled instructions execute -but without

writing their result anywhere- to correctly handle thependingreadersandcompletedfields.

C. Working Example

To illustrate different scenarios that could require triggering the recovery mechanism as well

as register reclamation handling, we use the example shown in Figure 2. This example shows a

DRAFT

10

validation buffer with 12 instructions belonging to 3 different epochs. Instructions can be in one

of the following states: dispatched but not issued, issued but not yet completed, and completed.

Unlike normal ROBs, no control information about these states is stored in the VB. Instead, the

only information required is whether the epoch is validatedor canceled.

In the example, assume that the three epochs have just been resolved, epochs 0 and 1 as

validated and epoch 2 as canceled. Thus, only instructions belonging to epochs 0 and 1 should

be allowed to update the machine state.

Firstly, instructions belonging to epoch 0 leave the VB. As this epoch has been validated,

each instruction will update theRATret and set thevalid remappingbit of the physical register

previously mapped to its destination logical register. Since these instructions are completed, the

VB is the last machine resource they consume.

Then, instructions of epoch 1 leave the VB, two completed, one issued and the other one

dispatched but not yet issued. TheRATret table and thevalid remappingbit are handled as

above, regardless the instruction status. However, the noncompleted instructions will remain in

the pipeline until they are complete.

Finally, instructions belonging to epoch 2 leave the VB as canceled. These instructions must

not update theRATret, but they must set thevalid remappingbit of the physical register currently

mapped to its destination logical register. In addition, the processor must set the correctRATfront,

re-execute the epoch initiator (if needed), and fetch the correct instructions. To this end, the

machine waits until the epoch initiator instruction that has triggered the cancellation reaches

the VB head. Then, the processor recovers to a correct state by copying theRATret to the

RATfront and resumes execution from the correct path. TheRST state is recovered as explained

in Section II-B.

D. Uniprocessor Memory Model

To correctly follow the uniprocessor memory model, it must be ensured that load instructi-

ons get the data produced by the newest previous store matching its memory address. A key

component to improve performance in such a model, is the load/store queue (LSQ).

In the VB microarchitecture, as done in some current microprocessors, memory reference

instructions are internally split by the hardware into two instructions when they are decoded

and dispatched: the memory address calculation, which is considered as an epoch initiator, and

DRAFT

11

Fig. 2. Instruction status and epochs.

the memory operation itself. The former reserves a VB entry when it is dispatched while the

latter reserves an entry in the LSQ. To free its corresponding LSQ entry, any memory reference

instruction must be validated and completed. In addition, to free its entry, a store instruction

must be the oldest memory reference instruction in the LSQ.

Load bypassing is the main technique applied to the LSQ to improve processor performance.

This technique permits loads to early execute by advancing previous stores in their access to

the cache. Load bypassing can be speculatively performed byallowing loads to bypass previous

stores in the LSQ even if any store address is unresolved yet.

As speculation may fail, processors must provide some mechanism to detect and recover from

load mispeculation. For instance, loads issued speculatively can be placed in a special buffer

called the finished load buffer [15]. The entry of this bufferis released when the load commits.

On the other hand, when a store commits, a search is performedin this buffer looking for aliasing

loads (note that all loads in the buffer are younger than the store). If aliasing is detected, when

the mispeculated load commits, both the load and subsequentinstructions must be re-executed.

A finished load buffer can be quite straightforwardly implemented in the VB, with no additional

complexity. In this case, a load instruction will release its entry in the finished load buffer when

it leaves the VB. When a store leaves the VB, the address of allprevious memory instructions

and its own address have been resolved. Thus, it can already search the mentioned buffer looking

for aliasing loads speculatively issued. As in a ROB-based implementation, all loads in the buffer

are younger than the store. On a hit, the recovery mechanism should be triggered as soon as

the mispeculated load exits the VB. Notice that this implementation allows mispeculation to be

early detected.

DRAFT

12

Finally, store-load forwarding and load replay traps are also supported by the VB by using

the same hardware available in current microprocessors.

E. Memory consistency model

In the LSQ devised for the VB microarchitecture, stores cannot be issued before older memory

instructions. However, as explained above, loads are allowed to bypass both loads and stores.

That is, we natively support a weak memory consistency model, similar to the ones available in

some commercial multiprocessors like the PowerPC, SPARC RMO, and Alpha.

Conservatively, to support a sequential memory consistency model, loads should not be allowed

to be issued before older memory operations have completed.However, assuming an interconnec-

tion network like the split-transaction bus implemented inthe Sun Microsystem’s Gigaplane [16],

a memory operation can be issued without violating the sequential memory consistency model

provided that all previous instructions requiring a bus transaction have already been issued on

the bus [17] (even if their data is still not ready). Similar enhancements are also possible when

using directory-based coherence protocols [18].

A more performance-effective implementation of the sequential memory consistency model

allows loads to speculatively bypass older local memory operations (loads or stores) without

enforcing the above condition. In such a case, a mispeculation is detected when a remote store

aliases with any local load issued speculatively. This can be done by using the hardware already

available to support the uniprocessor memory model [19].

To recover from such mispeculations, the VB should not validate memory address calculations

of loads until all previous memory operations result eitherin a cache hit or they generate a bus

transaction. Notice that memory latency could be hidden by requesting a remote cache block

even before the processor suffers a read miss in its cache forthat block [18]. A deep study of

these enhancements and their impact on performance is planned as for future work.

III. EXPERIMENTAL FRAMEWORK AND PERFORMANCE EVALUATION

This section presents the simulation environment and the benchmarks used to evaluate the

performance of the VB microarchitecture. For comparison purposes, two ROB-based proposals

without checkpointing have been modeled, one retiring instructions in program order (hereafter

the IOC processor) and the out-of-order commit technique proposedin [6] (from now on, the

DRAFT

13

Scan processor). As the VB microarchitecture cancels instructions as soon as they leave the VB,

to perform a fair comparison, the recovery mechanism for theROB-based architectures is also

triggered at the WB stage. In addition, the recovery penaltyhas been assumed to be equal in

all the simulated microarchitectures, regardless the ROB/VB size. Notice that this assumption

impacts negatively on the results obtained by the VB microarchitecture, since it requires a smaller

validation buffer to obtain the desired performance (see Section IV-A), which can be recovered

faster [4].

The analyzed architectures have been modeled on top of an extensively modified version of the

SimpleScalar toolset [20] with separated ROB, instructionqueues, and register file structures. The

pipeline has been also enlarged with separated decode, rename, and dispatch stages. Both load

speculation and store-load replay have been modeled in all the evaluated approaches. Table II

summarizes the architectural parameters used through the experiments. Performance has been

analyzed using amoderatevalue of memory latency (200 cycles) because processor frequency

is not growing at the same rate as in the past. However, as it can be deduced from the results,

if longer memory latencies were considered, performance gains provided by the VB would be

higher, as the ROB would be blocked for longer.

Experiments were run using the SPEC2000 benchmark suite [21]. Both integer (SpecInt) and

floating-point (SpecFP) benchmarks have been evaluated using theref input sets and statistics

were gathered using single simulation points [22]. The experimental study pursues two main

goals: to evaluate the potential benefits on performance of the proposal, and to explore its

complexity requirements in a modern processor.

A. Exploring the Potential of the VB Microarchitecture

To explore how the VB size impacts on performance, the remaining major processor structures

(i.e., instruction queue, register file, and load/store queue) have been assumed to be unbounded.

Figure 3 shows the average IPC (i.e., harmonic mean) for the SpecFP and SpecInt benchmarks

when varying the ROB/VB size. As expected, performance improvements provided by the VB

microarchitecture are much higher for floating-point benchmarks than for the integer ones. This

is because the ROB size is not the main performance bottleneck in integer applications. One

of the reasons is the high percentage of mispredicted branches. This result is in the line with

the works [3], [6]. Thus, hereafter, performance analysis will focus on floating-point workloads.

DRAFT

14

TABLE II

MACHINE PARAMETERS.

Microprocessor core

Issue policy Out of order

Branch predictor type Hybrid gShare/bimodal:

Gshare has 16-bit global history plus 64K 2-bit counters.

Bimodal has 2K 2-bit counters, and the

choice predictor has 1K 2-bit counters

Branch predictor penalty 10 cycles

Fetch, issue, commit bandwidth 4 instructions/cycle

of Integer ALU’s, multiplier/dividers 4/1

of FP ALU’s, FP multiplier/dividers 2/1

Memory hierarchy

Memory ports available (to CPU) 2

L1 data cache 32KB, 4 way, 64 byte-line

L1 data cache hit latency 3 cycles

L2 data cache 512KB, 8 ways, 64 byte-line

L2 data cache hit latency 18 cycles

Memory access latency 200 cycles

Concerning floating-point benchmarks, the highest IPC difference appears with the smallest

VB/ROB size (i.e., 32 entries), and these differences get smaller as the VB/ROB size increases.

In spite of this fact, it is required a large 1024-entry ROB for the IOC and Scan processors to

match the IPC achieved by the VB microarchitecture.

Figure 4 presents the IPC achieved by each individual benchmark for a 32-entry ROB/VB.

Loads and floating-point instructions are the main sources of IPC differences, since these instruc-

tions could potentially block the ROB for long. To provide insight into this fact, Table III shows

the percentage of these instructions, the L1 miss rate, thatthe retirement of instructions from the

ROB/VB is blocked. Results demonstrate that the VB microarchitecture effectively reduces the

blocking time, therefore improving performance. This can be appreciated by observing that those

applications showing high retirement blocking time differences also show high IPC differences

(see Figure 4). Of course, applications having a low percentage of both floating-point instructions

and a low cache miss rate would slightly benefit from our proposal.

DRAFT

15

(a) SpecFP (b) SpecInt

Fig. 3. IPC for SpecFP and SpecInt benchmarks.

Fig. 4. IPC for SpecFP benchmarks assuming a 32-entry ROB/VB.

B. Exploring the Behavior in a Modern Microprocessor

This section explores the behavior of the VB microarchitecture while dimensioning the major

microprocessor structures closely resembling the ones implemented in the Intel Pentium 4: a

32-entry instruction queue, a 64-entry load/store queue, 128 physical registers, and a 128-entry

ROB (IOC and Scan models). The VB size has been ranged from 8 to128 entries.

Figure 5 shows the obtained IPC. As it can be seen, the VB microarchitecture is much

more efficient since it achieves, with only 16 entries, on average, higher IPC than the other

architectures. On the other hand, the use of VBs larger than 32 entries provides minor benefits

DRAFT

16

TABLE III

VB IMPROVED PERFORMANCE REASONS.

Instructions (%) L1 miss Blocked time (%)

Workload f.point load rate (%) ROB 32 VB 32

168.wupwise 30 23 1 75 35

171.swim 43 27 9 93 41

172.mgrid 59 32 3 84 47

173.applu 52 30 5 90 49

177.mesa 13 27 1 59 47

178.galgel 27 40 6 88 44

179.art 20 27 34 95 60

183.equake 35 41 11 96 89

188.ammp 35 27 5 86 74

189.lucas 66 13 10 91 29

191.fma3d 35 30 1 73 60

200.sixtrack 64 19 0 72 39

301.apsi 22 24 1 47 44

on performance.

Although the VB microarchitecture does not benefit in the same rate integer and floating-

point benchmarks, we ran simulations for integer applications, and found that a 32-entry VB

provides the same integer performance than a 128-entry ROB.Thus, we can conclude that integer

benchmarks performance is not significantly affected when reducing the VB size.

To explore the complexity requirements of the four major microprocessor structures in the VB

microarchitecture, we measured their occupancy in number of entries. As shown in Figure 6,

in general, their occupancy is smaller in the VB than in the other architectures, regardless the

VB/ROB size. The only exception is the instruction queue structure. This result was expected,

as the decode stage is blocked for longer in the other architectures, which means that the VB

architecture allows a higher number of instructions to be dispatched. In other words, the validation

buffer structure has less pressure than the ROB, because part of this pressure moves to the

instruction queue (see Section IV-A).

Regarding the VB occupancy, differences are really high. The VB occupancy is, on average,

lower than one third the occupancy of the ROB. Notice that thehighest IPC benefits appear

DRAFT

17

Fig. 5. IPC for SpecFP benchmarks in a modern microprocessor.

in those applications whose VB requirements are smaller than the instruction queue ones (e.g.,

swimor mgrid, see Figures 6(a) and 6(b)). In these cases, the VB microarchitecture effectively

alleviates the retirement of instructions from the pipeline, allowing more instructions to be

decoded and increasing ILP. On the contrary, when the VB requirements are larger than the

ones of the instruction queue like happens when using a ROB (e.g., mesaor equake), the

benefits are smaller, since the ROB is not acting as the main performance bottleneck. Results

also show the effectiveness of the proposed register reclamation mechanism (see Figure 6(c)),

which leads to a lower number of required registers. Finally, the LSQ occupancy is lower in the

VB microarchitecture (see Figure 6(d)). This is because in ROB-based machines, a LSQ entry

cannot be released until all previous instructions have been committed. In contrast, in the VB

microarchitecture a LSQ entry only needs to wait until all the previous instructions have been

validated, which is a weaker condition.

As the proposed architecture implements both out-of-orderretirement and an aggressive regi-

ster reclamation method, one might think that performance benefits may come from both sides. To

isolate which part comes from the VB and which one from the register reclamation method, we

ran simulations assuming an unbounded register file. Figure7 shows the results. As observed, the

register mechanism itself slightly affects the overall performance of the VB microarchitecture.

Thus, one can conclude that almost all the benefits come from the fact that instructions are

out-of-order retired. As opposite, IOC and Scan improve their performance with an unbounded

DRAFT

18

(a) ROB and VB (b) Instruction Queue

(c) Register File (d) Load/Store Queue

Fig. 6. Resource occupancy.

amount of physical registers, but even in these cases, the performance of a 16-entry VB is still

better.

C. Impact on Performance of Supporting Precise Floating-Point Exceptions

Any floating-point exception can be supported by including the corresponding instructions

in the set of epoch initiators. If all floating-point instructions were included, since some of

these instructions may take tens of cycles to complete, the performance might be significantly

impacted. To deal with this fact, such instructions could solve their epoch early in the pipeline.

In this section, we assume that all the floating-point instructions are epoch initiators and their

epoch is resolved when they are completed, which is over-conservative. For example, some

floating-point exceptions can be easily detected by comparing the exponents (e.g., overflow) or

checking one of the operands (e.g., division by zero). Figure 8 shows the obtained results.

DRAFT

19

Fig. 7. IPC in a modern microprocessor assuming an unboundedamount of physical registers.

Fig. 8. IPC when supporting floating-point exceptions.

As expected, supporting all floating-point exceptions hurts the performance achieved by the

VB microarchitecture. However, even in this case, a 32-entry VB achieves a performance close

to the IOC processor with a 128-entry ROB. Moreover, a 64-entry VB achieves performance

close to the Scan and IOC models while using a ROB twice as large.

From these results, we can conclude that, although supporting precise floating-point exceptions

is encouraged by the IEEE-754 floating-point standard, the cost of enabling all the exceptions

defined by the standard strongly impacts performance. As a matter of fact, most architectures

allow disabling floating-point exceptions by software. In some architectures (e.g., Alpha) these

exceptions are imprecise by default [7], and it is required the help of the compiler to detect

which instruction raised the exception [23].

DRAFT

20

IV. DEALING WITH COMPLEXITY

Superscalar processors have evolved towards complex out-of-order microarchitectures in order

to exploit large amounts of instruction level parallelism.However, increasing the complexity of

critical components may adversary impact on the processor cycle. Therefore, there is an important

tradeoff, because increasing complexity may increase instructions per cycle, but at the same time,

it also may reduce clock speed.

This section analyzes how in the VB architecture, retiring instructions in an out-of-order

fashion, not only improves performance but also it can be implemented with less hardware

complexity. For this purpose, two different approaches have been analyzed: i) the required size

of the microprocessor components to reach a given performance, and ii) analyzing the impact

on performance of the fetch, decode, and issue widths.

A. Dimensioning the major microprocessor components

When designing a microprocessor, its components must be correctly sized. If a component

is too small dimensioned, it will incur in a performance degradation since it would act as a

bottleneck. On the contrary, dimensioning a component larger than necessary will incur in area

wasting.

As analyzed in Section III-B, the VB microarchitecture performs a more efficient use of the

microprocessor components than the in-order commit architecture. This means that components

should be dimensioned for the VB in a different way than for a in-order commit architecture.

The goal of this section is to identify the less complexity-effective configuration or mix of

processor components to reach a given performance level (i.e., IPC). To this end, a wide range of

complexities of the major processor structures have been analyzed: register file (64, 128, and 256

entries), issue queue (16, 32, 64, 128, and 256 entries), load-store queue (16, 32, 64, 128, and 256

entries), and ROB/VB size (16, 32, 64, 128, and 256 entries).The remaining processor parameters

have been fixed as in Section III-B. This gives an amount of5
3 × 3 = 375 configurations for

each modeled processor, which multiplied by the number of benchmarks evaluated represents

an important number of simulations.

Because of the large number of results, performance comparison becomes very difficult. To

ease this analysis, we firstly sorted the different configurations in increasing order of performance.

Then, for each group of mixes or configurations providing thesame performance, we selected

DRAFT

21

the one with less hardware complexity. In many cases, several mixes showed similar complexity.

However, for the sake of clarity, for each performance value, only one configuration was selected.

Figures 9 and 10 show these results. Notice that resources are not labeled in the same order in

both figures as their impact on performance differs depending on the modeled processor. As it

can be seen, the register file is the main performance bottleneck in both architectures, but the

second performance bottleneck differs. In the IOC processor, it is the ROB size while in the VB

architecture it is the IQ (Instruction Queue) size.

Since the main performance bottleneck in both architectures is the register file size, for a given

register file size, performance rises as long as the other resources are properly enlarged. Then,

to further improve performance, the register file itself must be enlarged again. This sequence

keeps on until the performance saturation point is reached.

To perform a fair comparison, we compare the complexity of the processors on the basis of

the same performance. To this end, we selected four performance levels, namely A, B, C, and

D (see Figures 9 and 10).

If VB and IOC processors are compared based on the D performance level, the IOC processor

requires a minimum complexity of a 128-entry RF (Register File), a 128-entry ROB, a 64-entry

IQ, and a 64-entry LSQ (Load-Store Queue), while the VB processor reaches similar performance

with half the size of the IQ, and both a VB and a LSQ four times smaller. Notice also that the

VB provides similar performance with only a 16-entry IQ.

Regarding the A performance level, the IOC processor requires a minimum complexity of a

256-entry RF, a 256-entry ROB, a 128-entry IQ, and a 128-entry LSQ, while the VB processor

reaches similar performance with half the size of the IQ, andan VB four times smaller than the

ROB (i.e., a 256-entry RF, a 64-entry VB, a 64-entry IQ, and a 128-entry LSQ). Notice also that

in that case, negligible performance drops are observed in the VB when the size of the LSQ is

reduced by a half (i.e., a 256-entry RF, a 64-entry VB, a 64-entry IQ, and a 64-entry LSQ). In

addition, if the complexity of the IOC processor is increased, no significant performance gain

is achieved above the A level. On contrast, in the VB processor performance might increase up

to around 32%.

Finally, remark that in between the analyzed cases there is awide gradient of performance

levels (for instance, B and C in Figures 9 and 10). For any given performance level, it is always

possible to find a VB hardware configuration with much less complexity than the required for

DRAFT

22

Fig. 9. Performance of the VB processor when varying the complexity of the RF (Register File), IQ (Issue Queue), ROB, and

LSQ (Load-Store Queue).

the IOC processor.

B. Analyzing the pipeline width

Previous section dimensioned the major microprocessor components. This section goes further

away exploring the complexity of the microprocessor pipeline by decreasing the fetch/decode/issue

of the baseline processor down to 1 instructions per cycle.

This is much more aggressive than simply resizing the microarchitecture components, because

modifying such widths has important implications in complexity. For instance, increasing the

issue width also increases the delay of the rename logic since that width also determines the

number of ports into the map table and the width of the dependence check logic. As another

example, reducing the issue width from 4 to 2 ways means that the number of read ports in

the register file will drop from 8 to 4. In addition, there are important area implications. For

example, the number of bypass paths increases with the square of the issue width. More details

on complexity issues can be found in [2].

Figure 11 shows the performance reached by the three compared architectures when varying

the issue fetch/decode/issue width from 1 to 4 instructionsper cycle. The remaining processor

parameters have been fixed as in Section III-B. Results are remarkable, since a 2-instruction width

DRAFT

23

Fig. 10. Performance of the IOC processor when varying the complexity of the RF (Register File), IQ (Issue Queue), ROB,

and LSQ (Load-Store Queue).

Fig. 11. IPC for different fetch/decode/issue widths.

VB architecture with a small 8-entry validation buffer reaches the same performance as a IOC

processor with a 4-instruction width and a 128-entry ROB. Also, with just a single-instruction

issue width and a 16-entry validation buffer, the VB microarchitecture reaches performance close

to a much more complex IOC processor with a two-instruction width and a 64-entry ROB.

In summary, experimental results evidence that the VB microarchitecture not only can out-

perform existing in order and out-of-order architectures,but also requires much less hardware

DRAFT

24

complexity.

V. RELATED WORK

Long latency operations constrain the output rate of the ROB, and thus, microprocessor

performance. Several microprocessor mechanisms have beenrecently proposed dealing with

this problem [24], [3], [5], [4]. In summary, these proposals permit to retire instructions in

a speculative mode when a long latency operation blocks the ROB head. These solutions

introduce specific hardware to checkpoint the architectural state at specific times and guarantee

correct execution. When a misprediction occurs, the processor rolls back to the checkpoint,

discarding all subsequent computations. Some of these proposals have been extended to be used

in multiprocessor systems [25], [26].

In [24], Mutlu et al proposed the run-ahead architecture forout-of-order microprocessors. In

this proposal, the state of the architectural register file is checkpointed each time a long-latency

memory operation blocks the ROB head. When a checkpoint is performed, the processor enters

in the run-ahead mode until the long latency instruction finishes. Meanwhile, a bogus value

is distributed for dependent instructions to continue. However, this execution mode does not

allow instructions to update the architectural state. Whenthe long latency operation finishes,

the processor rolls back to the checkpoint and re-executes the instructions in the normal mode,

discarding previous results. The run-ahead execution provides useful prefetching requests (both

instructions and data) as well as effective train for branchpredictors.

In [3], Kirman et al propose the checkpointed early load retirement mechanism which has

certain similarities with the previous one. To unclog the ROB when a long-latency load instruction

blocks the ROB head, a predicted value is provided for those dependent instructions to allow

them to continue. When the value of the load is fetched from memory, it is compared against

the predicted one. On a misprediction, the processor must roll back to the checkpoint.

In [5], Cristal et al propose to replace the ROB structure with a mechanism to perform

checkpoints at specific instructions. This mechanism uses aCAM structure for register mapping

purposes, which is also in charge of the freeing physical registers. Stores must wait in the

commit stage to modify the machine state until the closest previous checkpoint has committed.

In addition, instructions taking a long time to issue (e.g.,those dependent from a load) are

moved from the instruction queue to a secondary buffer, thusfreeing resources that can be used

DRAFT

25

by other instructions. These instructions must be re-inserted into the instruction queue when the

instruction they are dependent on has completed (e.g., the load data has already been fetched).

This problem has also been tackled by Akkary et al in [4].

In [27] Martinez et al propose an in-order retirement mechanism which identifies irreversible

instructions to early freeing resources. Unlike the VB microarchitecture, this proposal retires

instructions in-order. Also, as well as the works discussedabove, it needs checkpointing to roll

back the processor to a correct state.

In [6], a checkpoint free approach is presented. However, itstill uses a ROB. The proposal

scans then oldest entries of the ROB to select instructions to be retired. This fact constrains

this proposal making it unsuitable for large ROB sizes. In addition, resources are handled as a

typical processor using a ROB, without any focus on improving resource usage.

Finally, some proposals alleviate the performance degradation caused by ROB blocking by

enlarging the major microprocessor structures or efficiently managing them [28], [29], [30].

VI. CONCLUSIONS

This paper has proposed the VB microarchitecture, which it is aimed at retiring instructions out

of order while providing support for speculation and precise exception handling. The proposed

microarchitecture does not perform checkpoints because out-of-order retirement is correctly

performed by design.

Performance results have been compared against two ROB-based proposals, one retiring

instructions in order and the other one in out-of-order fashion. Regarding the effectiveness of the

VB buffer, results show that, with only a 32-entry validation buffer and assuming the remaining

major processor structures unbounded, our proposal achieves performance similar to the other

evaluated architectures with a 256-entry ROB. The benefits of the proposed microarchitecture do

not only apply to the complexity of the VB buffer, but also to the complexity of the remaining

major processor structures. In fact, results show that resource usage is not higher in the VB

while achieving better performance.

Concerning complexity versus performance tradeoffs, results show that to achieve a given per-

formance level, the VB microarchitecture requires simplerhardware in the major microprocessor

structures (i.e., register file, LSQ, and IQ) than an in-order retirement processor. Moreover, the

VB achieves, with a narrower pipeline width, similar performance than conventional ROB-based

DRAFT

26

processors. This fact brings important implications in those architectures where the microarchi-

tecture complexity is one of the most important issues, e.g., power-aware and SMT processor

implementations.

In summary, the VB has been shown to behave as a complexity-effective microarchitecture,

which makes the proposal attractive to either achieve better performance or reduce complexity

for a given performance level.

VII. A CKNOWLEDGMENTS

This work has been partially supported by the Generalitat Valenciana under grant GV06/326,

by the Spanish CICYT under grant TIN2006-15516-C04-01, andby CONSOLIDER-INGENIO

2010 under grant CSD2006-00046.

REFERENCES

[1] J. Smith and A. Pleszkun, “Implementation of precise interrupts in pipelined processors,” inProceedings of the 12th Annual

International Symposium on Computer Architecture, June 1985, pp. 36–44.

[2] S. Palacharla, N. Jouppi, and J. Smith, “Complexity-effective superscalar processor,” inProceedings of the 24th Annual

International Symposium on Computer Architecture, June 1997.

[3] N. Kirman, M. Kirman, M. Chaudhuri, and J. Martı́nez, “Checkpointed early load retirement,” inProceedings of the

International Symposium on High Performance Architecture, February 2005.

[4] H. Akkary, R. Rajwar, and S. T. Srinivasan, “Checkpoint processing and recovery: Towards scalable large instruction

window processors,” inProceedings of the 36th International Symposium on Microarchitecture, December 2003.

[5] A. Cristal, D. Ortega, J. Llosa, and M. Valero, “Out-of-order commit processors,” inProceedings of the International

Symposium on High Performance Architecture, February 2004.

[6] G. Bell and M. Lipasti, “Deconstructing commit,” inProceedings of the The International Symposium on Performance

Analysis of Systems and Software, March 2004.

[7] R. E. Kessler, “The alpha 21264 microprocessor,”IEEE Micro, vol. 19, no. 2, pp. 24–36, 1999.

[8] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy, “Power4 system microarchitecture, technical white paper,”

IBM Server Group, 2001.

[9] G. Hinton, D. Sager, M. Upton, D. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Rousell, “The microarchitecture of

the pentium 4 processor,”Intel Technology Journal, Q1, 2001.

[10] S. Petit, J. Sahuquillo, P. López, and J. Duato, “The validation buffer out-of-order retirement microarchitecture, Tech. Rep.

DISCA/0069-2007, 2007.

[11] L. Lamport, “How to make a multiprocessor computer thatcorrectly executes multiprocess programs,”IEEE Transactions

on Computers, vol. 28, no. 9, pp. 690–691, 1979.

[12] J. Smith and G. Sohi, “The microarchitecture of superscalar processors,”Proc. of the IEE, vol. 83, no. 2, 1995.

[13] M. Moudgill, K. Pingali, and S. Vassiliadis, “Registerrenaming and dynamic speculation: an alternative approach,” in

Proceedings of the 26th International Symposium on Microarchitecture, December 1993, pp. 202–213.

DRAFT

27

[14] K. Yeager, “The mips r10000 superscalar microprocessor,” IEEE Micro, pp. 28–40, 1996.

[15] J. Shen and M. Lipasti,Modern Processor Design. McGraw-Hill, 2005.

[16] K. Gharachorloo, A. Gupta, J. H. Singhal, D. Broniarczyk, F. M. Cerauskis, J. Price, L. Yuan, G. Cheng, D. D. amd

S. Fosth, N. Agarwal, K. Harvey, and E. Hagersten, “Two techniques to enhance the performance of memory consistency

modelsgigaplane: A high performance bus for large smps,” inProceedings of the Symposium on High Performance

Interconnects IV, 1996, pp. 41–52.

[17] D. J. Sorin, M. Plakal, M. D. Hill, and A. E. Condon, “Lamport clocks: Reasoning about shared memory correctness,

Tech. Rep. CS-TR-1998-1367, 1998.

[18] M. Plakal, D. J. Sorin, A. E. Condon, and M. D. Hill, “Lamport clocks: Verifying A directory cache-coherency protocol,”

in Proceedings of the 10th ACM Annual Symp. on Parallel Algorithms and Architectures (SPAA’98), 1998, pp. 67–76.

[19] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two techniques to enhance the performance of memory consistency models,”

in Proceedings of the 1991 International Conference on Parallel Processing, vol. I, Architecture. Boca Raton, FL: CRC

Press, 1991, pp. I–355–I–364.

[20] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0.”Computer Architecture News, vol. 25, no. 3, 1997.

[21] “Standard performance evaluation corporation,”http://www.spec.org/cpu2000/.

[22] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically characterizing large scale program behavior,” in

Proceedings of the 10th International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS-X), October 2002.

[23] GCC online documentation, Free Software Foundation, [Online]. Available:http://www.gnu.org/software/gcc/onlinedocs/,

2006.

[24] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runaheadexecution: An alternative to very large instruction windowfor

out-of-order processors,” inProceedings of the International Symposium on High Performance Architecture, February 2003.

[25] M. Kirman, N. Kirman, and J. Martı́nez, “Cherry-mp: Correctly integrating checkpointed early resource recyclingin chip

multiprocessors,” inProceedings of the International Symposium on Microarchitecture, November 2005.

[26] E. Vallejo, M. Galluzzi, A. Cristal, F. Vallejo, R. Beivide, P. Stenstrom, J. E. Smith, and M. Valero, “Implementing

kilo-instruction multiprocessors,” inIEEE Conference on Pervasive Services, Invited lecture, July 2005.

[27] J. Martı́nez, J. Renau, M. Huang, M. Prvulovic, and J. Torrellas, “Cherry: checkpointed early resource recycling in out-

of-order processors,” inProceedings of the 35th International Symposium on Microarchitecture, November 2002.

[28] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt, “A scalable instruction queue design using dependence chains,” in

Proceedings of the 29th Annual International Symposium on Computer Architecture, May 2002.

[29] R. Balasubramonian, S. Dwarkadas, and D. Albonesi, “Reducing the complexity of the register file in dynamic superscalar

processors,” inProceedings of the 34th Int. Symp. on Microarchitecture, December 2001.

[30] I. Park, C. Ooi, and T. Vijaykumar, “Reducing design complexity of the load/store queue,” inProceedings of the 36th

International Symposium on Microarchitecture, December 2003.

DRAFT

