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Abstract

Current superscalar processors commit instructions igrara order by using a reorder buffer
(ROB). The ROB provides support for speculation, precisseptions, and register reclamation. Howe-
ver, committing instructions in program order may lead gm#icant performance degradation if a long
latency operation blocks the ROB head.

Several proposals have been published to deal with thislgmolMost of them retire instructions
speculatively. However, as speculation may fail, chedkizoare required in order to rollback the pro-
cessor to a precise state, which requires both extra haedwamanage checkpoints and the enlargement
of other major processor structures, which in turn mightaectghe processor cycle.

This paper focuses on out-of-order commit in a nonspewalatiay, thus avoiding checkpointing.
To this end, we replace the ROB with a validation buffer (VBusture. This structure keeps dispatched
instructions until they are nonspeculative or mispecdlatéhich allows an early retirement. By doing so,
the performance bottleneck is largely alleviated. An aggjke register reclamation mechanism targeted
to this microarchitecture is also devised.

As experimental results show, the VB structure is much mdfieient than a typical ROB since,
with only 32 entries, it achieves a performance close to aarder commit microprocessor using a

256-entry ROB.

I. INTRODUCTION

Current high-performance microprocessors execute ictstns out-of-order to exploit in-
struction level parallelism (ILP). To support speculatesecution, provide precise exceptions,
and register reclamation, a reorder buffer (ROB) struciaresed [1]. After being decoded,

instructions are inserted in program order in the ROB, wlieeg are kept while being executed
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and until retired at the commit stage. The key to support@péon and precise exceptions is
that instructions leave the ROB also in program order, thatvhen they are the oldest ones in
the pipeline. Consequently, if a branch is mispredictedhanatruction raises an exception, there
is a guarantee that, when the offending instruction reathescommit stage, all the previous
instructions have already been retired and none of the qubsé ones have done it. Therefore,
to recover from that situation, all the processor has to do iabort the latter ones.

This behavior is conservative. When the ROB head is blockednstance, by a long latency
instruction (e.g., a load that misses in the L2), subsegueiructions cannot release their ROB
entries. This happens even if these instructions are inakgpe from the long latency one and
they have been completed. In such a case, since the ROB hateaiie, as long as instruction
decoding continues, the ROB may become full, thus stallwgprocessor for a valuable number
of cycles. Register reclamation is also handled in a coasee/way because physical registers
are mapped for longer than their useful lifetime. In summaégth the advantages and the
shortcomings of the ROB come from the fact that instructiarescommitted in program order.

A naive solution to address this problem is to enlarge the R@B to accommodate more
in flight instructions. However, as ROB-based microardtuses serialize the release of some
critical resources at the commit stage (e.g., physicalsterg or store queue entries), these
resources should be also enlarged. This resizing increasesost in terms of area and power,
and it might also impact the processor cycle [2].

To overcome this drawback, some solutions that commituettins out of order have been
published. These proposals can be classified into two appesadepending on whether instruc-
tions are speculatively retired or not. Some proposalsfalinto the first approach, like [3],
allow the retirement of the instruction obstructing the R@#&ad by providing a speculative value.
Others, like [4] or [5], replace the normal ROB with alteimatstructures to speculatively retire
instructions out of order. As speculation may fail, theseppisals need to provide a mechanism
to recover the processor to the correct state. To this eedarithitectural state of the machine is
checkpointed. Again, this implies the enlargement of soragommicroprocessor structures, for
instance, the register file [5] or the load/store queue [dfdnse completed instructions cannot
free some critical resources until their associated chaokps released.

Regarding the nonspeculative approach, Bell and Lipagipiépose to scan a few entries of

the ROB, as many as the commit width, and those instructiatisfging certain conditions are
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allowed to be retired. None of these conditions imposes atruation to be the oldest one in
the pipeline to be retired. Hence, instructions can bee@tout of program order. However, in
this scenario, the ROB head may become fragmented afterothenit stage, and thus it must
be collapsed for the next cycle. Collapsing a large strecisicostly in time and could adversely
impact the microprocessor cycle, which makes this proposalitable for large ROB sizes. In
addition, as experimental results will show, this propdsed performance constraints due to the
limited number of instructions that can be scanned at thenibistage.

In this paper we propose the Validation Buffer (VB) micrdatecture, which is also based on
the nonspeculative approach. This microarchitecture adels-O-like table structure analogous
to the ROB. The aim of this structure is to provide supportsipeculative execution, exceptions,
and register reclamation. While in the VB, instructions speculatively executed. Once all the
previous branches and previous exceptions are resolvedxicution mode of the instructions
changes either to nonspeculative or mispeculated. At thiat,dnstructions are allowed to leave
the VB. Therefore, instructions leave the VB in program otolgt, unlike the ROB, they do not
remain in the VB until retirement. Instead, they remain ia ¥B only until the execution mode
of such instruction is resolved, either nonspeculative mpeculated. Consequently, instructions
leave the VB at different stages of their execution: conguletissued, or just decoded and
not issued. In particular, a long latency memory referemsgruction could leave the VB as
soon as its memory address is successfully calculated anshge fault has been risen. This
paper discusses how the VB microarchitecture works, focusin how it deals with register
reclamation, speculative execution, and exceptions.

The main contribution of this paper is the proposal of an eggjve out-of-order retirement
microarchitecture without checkpointing. This microatebture decouples instruction tracking
for execution and for resource reclamation purposes. Tlpagsal clearly outperforms the
existing one [6] that, like ours, does not perform check{mirince it achieves more than twice
its performance using smaller VB/ROB sizes. On the othedhagegister reclamation cannot
be handled as done in current microprocessors [7], [8], €&jalnse no ROB is used. Therefore,
we devise an aggressive register reclamation method éardetthis architecture. Experimental
results show that the VB microarchitecture increases ttievithile requiring less complexity in
some major critical resources like the register file and tdaslistore queue.

This paper presents the VB microarchitecture and its perdoce evaluation results. Indeed,
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this paper analyzes in a deep and extensive way, complpgitprmance tradeoffs, including
two main studies: i) an analysis of the complexity of the mgjmcessor structures required to
achieve a given performance level, and ii) an analysis ofrtipact on performance of different
pipeline widths. Results show that the VB microarchiteetperforms better using less resources,
and that it can outperform in-order retirement architezfueven when using narrower pipeline
widths. The latter result brings important implications)ce the pipeline width has a strong
impact on processor complexity.

The remainder of this paper is organized as follows. Sedtidescribes the VB microarchi-
tecture. Section Il explores the potential of the proposecroarchitecture and its performance
in a modern processor. Section IV analyzes the performabtaned when varying the com-
plexity requirements. Section V summarizes the relateckwieinally, Section VI presents some

concluding remarks.

[I. THE VB MICROARCHITECTURE

The commit stage is typically the latest one of the microgeckure pipeline. At this stage, a
completed instruction updates the architectural machie sfrees the used resources and exits
the ROB. The mechanism proposed in this paper allows insingto be retired early, as soon
as it is known that they are nonspeculative. Notice thateestructions may not be completed.
Once they are completed, they will update the machine stadefree the occupied resources.
Therefore, instructions will exit the pipeline in an outarfer fashion.

The necessary conditions to allow an instruction to be cdtedhiout-or-order are [6]: i)
the instruction is completed; ii) WAR hazards are solved.(ia write to a particular register
cannot be permitted to commit before all prior reads of thahitected register have been
completed); iii) previous branches are successfully ptedi iv) none of the previous instructions
IS going to raise an exception, and v) the instruction is nevlved in memory replay traps. The
first condition is straightforwardly met by any proposal la¢ twriteback stage. The last three
conditions are handled by the Validation Buffer (VB) sturet, which replaces the ROB and
contains the instructions whose conditions are not knownTee second condition is fulfilled
by the devised register reclamation method (see Secti#). II-

The VB deals with the speculation-related conditions {ui,and v) by decomposing code

into fragments orepochs The epoch boundaries are defined by instructions that mégten
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an speculative execution, referred toegsoch initiators(e.g., branches or potentially exception
raiser instructions). Only those instructions whose resiepoch initiators have completed and
confirmed their prediction are allowed to modify the maclstege. We refer to these instructions
asvalidated instructions

Instructions reserve an entry in the VB when they are dismatcthat is, they enter in program
order in the VB. Epoch initiator instructions are marked ashsin the VB. When an epoch
initiator detects a mispeculation, all the following ingttions are canceled. When an instruction
reaches the VB head, if it is an epoch initiator and it has oob@eted execution yet, it waits.
When it completes, it leaves the VB and updates machine, Statéay. Non epoch-initiator
instructions that reach the VB head can leave it regardleisetr execution state. That is, they
can be either dispatched, issued or completed. Howevertloose not canceled instructions (i.e.,
validated) will update the machine state. On the other heangeled instructions are drained to
free the resources they occupy (see Section II-B).

Notice that when an instruction leaves the VB, if it is alnp@dmpleted, it is not consuming
execution resources in the pipeline. Thus, it is analogows ormal retirement when using the
ROB. Otherwise, unlike the ROB, the instructionretired from the VB but it remains in the
pipeline until it is completed.

The proposed microarchitecture can support a wide rangpaifhes initiators. At least, epoch
initiators according to the three speculative related d¢ants are supported. Therefore, branches
and memory reference instructions (i.e., the address ledilon part) act as epoch initiators. In
other words, branch speculation, memory replay traps (se&dd 11-D) and exceptions related
with address calculation (e.g., page faults, invalid asisles) are supported by design.

It is possible to include more instructions in the set of dpwouttiators. For instance, in order
to support precise floating-point exceptions, all floatpagnt instructions should be included
in this set. As instructions are able to leave the VB only whiggir epoch initiators validate
their epoch, a high percentage of epoch initiators mighticedhe performance benefits of the
VB microarchitecture. User definable flags can be used toleraldisable support for precise
exceptions. If the corresponding flag is enabled, the ingtm that may generate a given type
of exception will force a new epoch when it is decoded. In,facprogram could dynamically
enable or disable these flags during its execution. For ngstait can be enabled when the

compiler suspects that an arithmetic exception may bedaise
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The design and performance evaluation of a VB-based mottggsor system is out of the
scope of this paper. Nevertheless, as multicore procesgserbecoming an important segment
of the market, we briefly discuss how the proposed microtechire could be adapted for sup-
porting stricter memory consistency models, like the satjgememory consistency model [11]

(see Section II-E).

A. Register Reclamation

Typically, modern microprocessors free a physical regiatieen the instruction that renames
the corresponding logical register commits [12]. Then, phgsical register index is placed in
the list that contains the free physical registers avasldbi new producers.

Waiting until the commit stage to free a physical registexasy to implement but conforms to
a conservative approach; a sufficient condition is that@lscmers have read the corresponding
value. Therefore, this method does not efficiently use tegisas they can be mapped for longer
than their useful lifetime. In addition, this method re@sikeeping track of the oldest instruction
in the pipeline. As this instruction may have already left ¥B, this method is unsuitable for
our proposal.

Due to these reasons, we devised a register reclamatideggtraased on the counter me-
thod [13], [12] targeted for the VB microarchitecture. Thardware components used in this
scheme, as shown in Figure 1, are:

Frontend Register Alias Table (RAT},.,:). This table maintains the current mapping for
each logical register and is accessed at the rename stagetable is indexed by the source
logical register to obtain the corresponding physical segiidentifier. Additionally, each time
a new physical register is mapped to a destination logicgibter, theRATy,,,, is updated.

Retirement Register Alias Table (RAT,.;). The RAT,.; table is updated as long as instruc-
tions exit the VB. This table contains a precise state of #ggster map, as only those validated
instructions leaving the VB are allowed to update it.

Register Status Table (RST). The RST is indexed by a physical register number and contains
three fields, labeled gsendingreaders valid_remappingand completedrespectively. Thgen-
ding_readersfield contains the number of decoded instructions that aoestine corresponding
physical register, but have not read it yet. This value iganmented as consumers enter the

decode stage, and decremented when they are issued to theienreainits. The second and third
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Fig. 1. VB microarchitecture block diagram.

fields are composed each by a single bit. Madéid_remappingbit is set when the associated
logical register has beedefinitively remapped to a new physical register, that is, when the
instruction that remapped the logical register has leftiBeas validated. Finally, theompleted

bit indicates that the instruction producing its value haspleted execution, writing the result
to the corresponding physical register.

With this representation, a free physical regigtetan be easily identified when the corres-
ponding entry in theRST contains the triple{0,1,1}. A O in pendingreadersguarantees that
no instruction already in the pipeline will read the contehip. Next, a 1 invalid_remapping
implies that no new instruction will enter the pipeline (i #nerenamestage) and read the content
of p, because has been unmapped by a valid instruction. Finally, a 1 indhepletedfield
denotes that no instruction in the pipeline is going to ovéenp. These conditions ensure that
a specific physical register can be safely reallocated fantsequent renaming. On the other
hand, a triplef0,0,1} denotes a busy register, with no pending readers, not unedappa valid
instruction, and appearing as the result of a completed yafid) operation.

Table | shows different situations which illustrate the dgmc operation of the proposed
register reclamation strategy in a non-speculative mosgleyell as the updating mechanism of
RST, RAT},0n,, and RAT,., tables. In particular, the last row of the table points ow@t thsks
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TABLE |

RSTACTIONS FOR DIFFERENT PIPELINE EVENTS

Event ‘ Actions ‘

An instruction enters theenamestage and has phys|- RST'[p].pending_readers + +
cal register (p.r.p as source operand.

I enters theenamestage and reclaims a p.r. to map afrind a free p.r.p and set RST[p] = {0,0,0},
output logical registet. RAT pronmi|l] = p.

1 is issued and reads py. RST[p].pending readers — —

I finishes execution, writing the result over par. RST[p].completed = 1

I exits the VB as validated. is the logical destination RST[p'].valid-remapping =1, RAT,¢[l] = p.
of I, p.r. p is the current mapping of, and p.r.p’ was
the previous mapping df

to be performed when an instruction leaves the VB as valilafte perform these tasks, the VB
must keep track of: i) the destination logical regigterf the instruction, ii) the physical register
p mapped td by the instruction, and iii) the physical registérthat was previously mapped to
[. Notice that this information is also stored in a typical RO&sed architecture.

B. Recovery Mechanism

The recovery mechanism always involves restoring bothRAd;,,,,, and theRST tables.

Register Alias Table Recovery. Current microprocessors employ different methods tmrest
the renaming information when a mispeculation or exceptiocurs. The method presented in
this paper uses the two renaming tabl&s{7%,,,, and RAT,.,, explained above, similarly to
the Pentium 4 [9].

RAT,., contains a delayed copy ofalidated RATY,.,,. Thatis, it matches thB ATy, table
at the time the exiting (as valid) instruction was renameal. & simple method to implement
the recovery mechanism (restoring the mapping to a pretase)ss to wait until the offending
instruction reaches the VB head, and then copyRW({,., into RATY,,,,. Alternative imple-
mentations can be found in [4].

Register Status Table Recovery. The recovery mechanism must also undo the modifications
performed by the canceled instructions in any of the thrddsfief the RST'.

Concerning thealid_remappindield, we describe two possible techniques to restore itsasl
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The first technique squashes from the VB those entries gnelng to instructions younger than
the offending instruction when this one reaches the VB haathat point, theRAT,.; contains
the physical registers identifiers that we use to restorectireect mapping. The remaining
physical registers must be freed. To this end,vallid_remappingentries are initially set to 1
(necessary condition to be freed). Then, tRdT,., is scanned looking for physical registers
whosevalid_remappingentry must be reset.

The second technique relies on the following observationly @he physical registers that
were allocated (i.e., mapped to a logical register) by utdions younger than the offending
one (i.e., the canceled instructions) must be freed. Alsehimstructions will be inside the VB
when the offending instruction reaches the VB head. Thuspmig need to drain them from
the VB. These drained instructions must set to 1 vhéd remappingentry of their current
mapping. Notice that in this case, thalid_remappingflag is used to free the registers allocated
by the current mapping, instead of the previous mapping ilikeormal operation. While the
canceled instructions are being drained, new instructi@amsenter the renaming stage, provided
that the RATY},,,, has been already recovered. Therefore, the VB draining eaavkerlapped
with subsequent new processor operations.

Regarding to thependingreadersfield, it cannot be just reset, as there can already be valid
pending readers in the issue queue. Thus, gettdingreadersentry must be decremented as
many as the number of canceled pending readers for the porrdmg physical register. To
this end, the issue logic must allow to detect those instrastyounger than the offending
instruction, that is, the canceled pending readers. Thisbaimplemented by using a bitmap
mask in the issue queue to identify which instructions anenger than a given branch [14]. The
canceled instructions must be drained from the issue gueuertectly handle (i.e., decrement)
their pendingreadersentries. Notice that this logic can be also used to handle:dhepleted
field, by enabling a canceled instruction to set the entrytefdestination physical register.
Alternatively, it is also possible to simply let the canaklmstructions execute -but without

writing their result anywhere- to correctly handle thendingreadersand completedfields.

C. Working Example

To illustrate different scenarios that could require taggg the recovery mechanism as well

as register reclamation handling, we use the example showigure 2. This example shows a
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validation buffer with 12 instructions belonging to 3 diéat epochs. Instructions can be in one
of the following states: dispatched but not issued, issugcbt yet completed, and completed.
Unlike normal ROBs, no control information about theseestas stored in the VB. Instead, the
only information required is whether the epoch is validabeaanceled.

In the example, assume that the three epochs have just bselwe® epochs 0 and 1 as
validated and epoch 2 as canceled. Thus, only instructiefenging to epochs 0 and 1 should
be allowed to update the machine state.

Firstly, instructions belonging to epoch O leave the VB. Agstepoch has been validated,
each instruction will update th&AT,.; and set thevalid_remappingbit of the physical register
previously mapped to its destination logical registercBithese instructions are completed, the
VB is the last machine resource they consume.

Then, instructions of epoch 1 leave the VB, two completedt msued and the other one
dispatched but not yet issued. Ti#AT,.; table and thevalid_remappingbit are handled as
above, regardless the instruction status. However, thecoompleted instructions will remain in
the pipeline until they are complete.

Finally, instructions belonging to epoch 2 leave the VB asceted. These instructions must
not update the? AT,.,, but they must set thealid_remappingpit of the physical register currently
mapped to its destination logical register. In additioe, phocessor must set the corréct Ty, .,
re-execute the epoch initiator (if needed), and fetch theecb instructions. To this end, the
machine waits until the epoch initiator instruction thas leaggered the cancellation reaches
the VB head. Then, the processor recovers to a correct syawfying the RAT,.; to the
RATy,.,, and resumes execution from the correct path. RIS€" state is recovered as explained

in Section II-B.

D. Uniprocessor Memory Model

To correctly follow the uniprocessor memory model, it mustdnsured that load instructi-
ons get the data produced by the newest previous store mgtasi memory address. A key
component to improve performance in such a model, is the/st@m@ queue (LSQ).

In the VB microarchitecture, as done in some current mi@o@ssors, memory reference
instructions are internally split by the hardware into twistructions when they are decoded

and dispatched: the memory address calculation, whichrisidered as an epoch initiator, and
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Validation Buffer
Validated/Cancelied |C|C|C| c|v|v|v|v|v|v|v|v|
Epoch L oL 71 g

e s [ [ [ LT

Status: Dispatched D Issuedlzl Completed |:| Epoch initiator

Fig. 2. Instruction status and epochs.

the memory operation itself. The former reserves a VB entienvit is dispatched while the
latter reserves an entry in the LSQ. To free its correspantd®Q entry, any memory reference
instruction must be validated and completed. In additionfrée its entry, a store instruction
must be the oldest memory reference instruction in the LSQ.

Load bypassing is the main technique applied to the LSQ toamgpprocessor performance.
This technique permits loads to early execute by advancregiqus stores in their access to
the cache. Load bypassing can be speculatively performedidying loads to bypass previous
stores in the LSQ even if any store address is unresolved yet.

As speculation may fail, processors must provide some nmésimato detect and recover from
load mispeculation. For instance, loads issued specealatsan be placed in a special buffer
called the finished load buffer [15]. The entry of this buffereleased when the load commits.
On the other hand, when a store commits, a search is perfamike buffer looking for aliasing
loads (note that all loads in the buffer are younger than tbee} If aliasing is detected, when
the mispeculated load commits, both the load and subsednsnictions must be re-executed.

A finished load buffer can be quite straightforwardly impkarted in the VB, with no additional
complexity. In this case, a load instruction will releasedntry in the finished load buffer when
it leaves the VB. When a store leaves the VB, the address giredious memory instructions
and its own address have been resolved. Thus, it can alreadghsthe mentioned buffer looking
for aliasing loads speculatively issued. As in a ROB-basgulémentation, all loads in the buffer
are younger than the store. On a hit, the recovery mechartisulds be triggered as soon as
the mispeculated load exits the VB. Notice that this impletagon allows mispeculation to be

early detected.
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Finally, store-load forwarding and load replay traps ao aupported by the VB by using

the same hardware available in current microprocessors.

E. Memory consistency model

In the LSQ devised for the VB microarchitecture, stores oaive issued before older memory
instructions. However, as explained above, loads are allote bypass both loads and stores.
That is, we natively support a weak memory consistency mai@ilar to the ones available in
some commercial multiprocessors like the PowerPC, SPAR@Rdd Alpha.

Conservatively, to support a sequential memory consigterarlel, loads should not be allowed
to be issued before older memory operations have compldtegdever, assuming an interconnec-
tion network like the split-transaction bus implementethi@ Sun Microsystem'’s Gigaplane [16],
a memory operation can be issued without violating the seitplanemory consistency model
provided that all previous instructions requiring a bussection have already been issued on
the bus [17] (even if their data is still not ready). Similathancements are also possible when
using directory-based coherence protocols [18].

A more performance-effective implementation of the setjaememory consistency model
allows loads to speculatively bypass older local memoryratpens (loads or stores) without
enforcing the above condition. In such a case, a mispeoulasi detected when a remote store
aliases with any local load issued speculatively. This caiddine by using the hardware already
available to support the uniprocessor memory model [19].

To recover from such mispeculations, the VB should not waédnemory address calculations
of loads until all previous memory operations result eitimea cache hit or they generate a bus
transaction. Notice that memory latency could be hiddendmguesting a remote cache block
even before the processor suffers a read miss in its cachtdbiblock [18]. A deep study of

these enhancements and their impact on performance isguaamfor future work.

[1l. EXPERIMENTAL FRAMEWORK AND PERFORMANCE EVALUATION

This section presents the simulation environment and tmehearks used to evaluate the
performance of the VB microarchitecture. For comparisorppses, two ROB-based proposals
without checkpointing have been modeled, one retiringruasions in program order (hereafter

the IOC processor) and the out-of-order commit technique propasg€] (from now on, the
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Scan processor). As the VB microarchitecture cancelsuostms as soon as they leave the VB,
to perform a fair comparison, the recovery mechanism forR@#-based architectures is also
triggered at the WB stage. In addition, the recovery penladty been assumed to be equal in
all the simulated microarchitectures, regardless the RBBgize. Notice that this assumption
impacts negatively on the results obtained by the VB miaioiéecture, since it requires a smaller
validation buffer to obtain the desired performance (se&i@e IV-A), which can be recovered
faster [4].

The analyzed architectures have been modeled on top of ansaxely modified version of the
SimpleScalar toolset [20] with separated ROB, instructjopaues, and register file structures. The
pipeline has been also enlarged with separated decodeneerand dispatch stages. Both load
speculation and store-load replay have been modeled imalevaluated approaches. Table Il
summarizes the architectural parameters used throughxjreriments. Performance has been
analyzed using anoderatevalue of memory latency (200 cycles) because processoudrexy
is not growing at the same rate as in the past. However, asiibeadeduced from the results,
if longer memory latencies were considered, performandesgarovided by the VB would be
higher, as the ROB would be blocked for longer.

Experiments were run using the SPEC2000 benchmark suifeB21h integer (Specint) and
floating-point (SpecFP) benchmarks have been evaluated tiseref input sets and statistics
were gathered using single simulation points [22]. The arpental study pursues two main
goals: to evaluate the potential benefits on performancehefproposal, and to explore its

complexity requirements in a modern processor.

A. Exploring the Potential of the VB Microarchitecture

To explore how the VB size impacts on performance, the reimgimajor processor structures
(i.e., instruction queue, register file, and load/storeug)idnave been assumed to be unbounded.
Figure 3 shows the average IPC (i.e., harmonic mean) for peef? and Specint benchmarks
when varying the ROB/VB size. As expected, performance awpments provided by the VB
microarchitecture are much higher for floating-point benarks than for the integer ones. This
is because the ROB size is not the main performance botkeimemteger applications. One
of the reasons is the high percentage of mispredicted besndrhis result is in the line with

the works [3], [6]. Thus, hereafter, performance analysisfacus on floating-point workloads.
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TABLE Il

MACHINE PARAMETERS

Microprocessor core

Issue policy Out of order
Branch predictor type Hybrid gShare/bimodal:
Gshare has 16-bit global history plus 64K 2-bit counte

—

S.
Bimodal has 2K 2-bit counters, and the
choice predictor has 1K 2-bit counters
Branch predictor penalty 10 cycles

Fetch, issue, commit bandwidth 4 instructions/cycle

# of Integer ALU’s, multiplier/dividers| 4/1

# of FP ALU's, FP multiplier/dividers| 2/1

Memory hierarchy

Memory ports available (to CPU) 2

L1 data cache 32KB, 4 way, 64 byte-line
L1 data cache hit latency 3 cycles

L2 data cache 512KB, 8 ways, 64 byte-line
L2 data cache hit latency 18 cycles

Memory access latency 200 cycles

Concerning floating-point benchmarks, the highest IPCethffice appears with the smallest
VB/ROB size (i.e., 32 entries), and these differences getllemas the VB/ROB size increases.
In spite of this fact, it is required a large 1024-entry ROB fioe IOC and Scan processors to
match the IPC achieved by the VB microarchitecture.

Figure 4 presents the IPC achieved by each individual beadhiior a 32-entry ROB/VB.
Loads and floating-point instructions are the main souré¢éB8@ differences, since these instruc-
tions could potentially block the ROB for long. To providesight into this fact, Table 11l shows
the percentage of these instructions, the L1 miss ratetlibatetirement of instructions from the
ROB/VB is blocked. Results demonstrate that the VB microidéecture effectively reduces the
blocking time, therefore improving performance. This carappreciated by observing that those
applications showing high retirement blocking time difieces also show high IPC differences
(see Figure 4). Of course, applications having a low peeggnbf both floating-point instructions

and a low cache miss rate would slightly benefit from our psaho
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B. Exploring the Behavior in a Modern Microprocessor

This section explores the behavior of the VB microarchitextwhile dimensioning the major
microprocessor structures closely resembling the onesemgnted in the Intel Pentium 4: a
32-entry instruction queue, a 64-entry load/store queB8, dhysical registers, and a 128-entry
ROB (I0OC and Scan models). The VB size has been ranged froml88caentries.

Figure 5 shows the obtained IPC. As it can be seen, the VB wichitecture is much
more efficient since it achieves, with only 16 entries, onrage, higher IPC than the other

architectures. On the other hand, the use of VBs larger tRaen®ies provides minor benefits
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TABLE 1lI

VB IMPROVED PERFORMANCE REASONS

Instructions (%)| L1 miss || Blocked time (%)
Workload f.point ‘ load | rate (%)| ROB 32 ‘ VB 32
168.wupwise|| 30 23 1 75 35
171.swim 43 27 9 93 41
172.mgrid 59 32 3 84 47
173.applu 52 30 5 90 49
177.mesa 13 27 1 59 47
178.galgel 27 40 6 88 44
179.art 20 27 34 95 60
183.equake 35 41 11 96 89
188.ammp 35 27 5 86 74
189.lucas 66 13 10 91 29
191.fma3d 35 30 1 73 60
200.sixtrack 64 19 0 72 39
301.apsi 22 24 1 a7 44

on performance.

Although the VB microarchitecture does not benefit in the samate integer and floating-
point benchmarks, we ran simulations for integer applcestj and found that a 32-entry VB
provides the same integer performance than a 128-entry R@s, we can conclude that integer
benchmarks performance is not significantly affected wheelucing the VB size.

To explore the complexity requirements of the four majornepcocessor structures in the VB
microarchitecture, we measured their occupancy in numbentiies. As shown in Figure 6,
in general, their occupancy is smaller in the VB than in theeotarchitectures, regardless the
VB/ROB size. The only exception is the instruction queuadtire. This result was expected,
as the decode stage is blocked for longer in the other aothres, which means that the VB
architecture allows a higher number of instructions to Ispaiched. In other words, the validation
buffer structure has less pressure than the ROB, becausefptris pressure moves to the
instruction queue (see Section IV-A).

Regarding the VB occupancy, differences are really higke VB occupancy is, on average,

lower than one third the occupancy of the ROB. Notice thatlilghest IPC benefits appear
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Fig. 5. IPC for SpecFP benchmarks in a modern microprocessor

in those applications whose VB requirements are smallar tha instruction queue ones (e.g.,
swimor mgrid, see Figures 6(a) and 6(b)). In these cases, the VB micnbectlre effectively
alleviates the retirement of instructions from the pipelimllowing more instructions to be
decoded and increasing ILP. On the contrary, when the VBireauents are larger than the
ones of the instruction queue like happens when using a RO, feesaor equake, the
benefits are smaller, since the ROB is not acting as the maiorpence bottleneck. Results
also show the effectiveness of the proposed register retlammechanism (see Figure 6(c)),
which leads to a lower number of required registers. Findtlg LSQ occupancy is lower in the
VB microarchitecture (see Figure 6(d)). This is because @Bmased machines, a LSQ entry
cannot be released until all previous instructions haven lmmenmitted. In contrast, in the VB
microarchitecture a LSQ entry only needs to wait until a# ghrevious instructions have been
validated, which is a weaker condition.

As the proposed architecture implements both out-of-oreirement and an aggressive regi-
ster reclamation method, one might think that performaresesfits may come from both sides. To
isolate which part comes from the VB and which one from thesteg reclamation method, we
ran simulations assuming an unbounded register file. Figsteows the results. As observed, the
register mechanism itself slightly affects the overallfpenance of the VB microarchitecture.
Thus, one can conclude that almost all the benefits come franfect that instructions are

out-of-order retired. As opposite, IOC and Scan improver therformance with an unbounded
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Fig. 6. Resource occupancy.

amount of physical registers, but even in these cases, tierpance of a 16-entry VB is still
better.

C. Impact on Performance of Supporting Precise FloatingaP&xceptions

Any floating-point exception can be supported by includihg torresponding instructions
in the set of epoch initiators. If all floating-point insttians were included, since some of
these instructions may take tens of cycles to complete, éhfompnance might be significantly
impacted. To deal with this fact, such instructions coulbvesdheir epoch early in the pipeline.
In this section, we assume that all the floating-point ingtams are epoch initiators and their
epoch is resolved when they are completed, which is oveservative. For example, some
floating-point exceptions can be easily detected by compahe exponents (e.g., overflow) or

checking one of the operands (e.g., division by zero). Edushows the obtained results.
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As expected, supporting all floating-point exceptions $itine performance achieved by the
VB microarchitecture. However, even in this case, a 32yeWB achieves a performance close
to the IOC processor with a 128-entry ROB. Moreover, a 64yeNB achieves performance
close to the Scan and IOC models while using a ROB twice ag.larg

From these results, we can conclude that, although suppa@rtecise floating-point exceptions
is encouraged by the IEEE-754 floating-point standard, tst of enabling all the exceptions
defined by the standard strongly impacts performance. As teemaf fact, most architectures
allow disabling floating-point exceptions by software. bmree architectures (e.g., Alpha) these
exceptions are imprecise by default [7], and it is required help of the compiler to detect

which instruction raised the exception [23].
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IV. DEALING WITH COMPLEXITY

Superscalar processors have evolved towards complexf-autier microarchitectures in order
to exploit large amounts of instruction level paralleligdowever, increasing the complexity of
critical components may adversary impact on the processte.cTherefore, there is an important
tradeoff, because increasing complexity may increaseucisons per cycle, but at the same time,
it also may reduce clock speed.

This section analyzes how in the VB architecture, retiringtiuctions in an out-of-order
fashion, not only improves performance but also it can belempnted with less hardware
complexity. For this purpose, two different approachesehiaeen analyzed: i) the required size
of the microprocessor components to reach a given perfaejyand ii) analyzing the impact

on performance of the fetch, decode, and issue widths.

A. Dimensioning the major microprocessor components

When designing a microprocessor, its components must beatlyr sized. If a component
is too small dimensioned, it will incur in a performance datation since it would act as a
bottleneck. On the contrary, dimensioning a componentlatigan necessary will incur in area
wasting.

As analyzed in Section 1lI-B, the VB microarchitecture penis a more efficient use of the
microprocessor components than the in-order commit actite. This means that components
should be dimensioned for the VB in a different way than fonaitider commit architecture.

The goal of this section is to identify the less complexitfeetive configuration or mix of
processor components to reach a given performance leegllRC). To this end, a wide range of
complexities of the major processor structures have bealyzed: register file (64, 128, and 256
entries), issue queue (16, 32, 64, 128, and 256 entriesldtmaie queue (16, 32, 64, 128, and 256
entries), and ROB/VB size (16, 32, 64, 128, and 256 entrids).remaining processor parameters
have been fixed as in Section IlI-B. This gives an amouns’ok 3 = 375 configurations for
each modeled processor, which multiplied by the number othmarks evaluated represents
an important number of simulations.

Because of the large number of results, performance cosgmabecomes very difficult. To
ease this analysis, we firstly sorted the different configoma in increasing order of performance.

Then, for each group of mixes or configurations providing $hene performance, we selected
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the one with less hardware complexity. In many cases, Sewvexas showed similar complexity.
However, for the sake of clarity, for each performance vatuy one configuration was selected.
Figures 9 and 10 show these results. Notice that resoureesoarabeled in the same order in
both figures as their impact on performance differs dependimthe modeled processor. As it
can be seen, the register file is the main performance betkeim both architectures, but the
second performance bottleneck differs. In the 10C proaessis the ROB size while in the VB
architecture it is the 1Q (Instruction Queue) size.

Since the main performance bottleneck in both architestisgréhe register file size, for a given
register file size, performance rises as long as the otheuress are properly enlarged. Then,
to further improve performance, the register file itself e enlarged again. This sequence
keeps on until the performance saturation point is reached.

To perform a fair comparison, we compare the complexity ef phocessors on the basis of
the same performance. To this end, we selected four perfamenkevels, namely A, B, C, and
D (see Figures 9 and 10).

If VB and IOC processors are compared based on the D perfaerianel, the IOC processor
requires a minimum complexity of a 128-entry RF (Registée)Fa 128-entry ROB, a 64-entry
IQ, and a 64-entry LSQ (Load-Store Queue), while the VB pssoereaches similar performance
with half the size of the IQ, and both a VB and a LSQ four timesen Notice also that the
VB provides similar performance with only a 16-entry I1Q.

Regarding the A performance level, the IOC processor requarminimum complexity of a
256-entry RF, a 256-entry ROB, a 128-entry IQ, and a 128ydrfBQ, while the VB processor
reaches similar performance with half the size of the 1Q, amd/B four times smaller than the
ROB (i.e., a 256-entry RF, a 64-entry VB, a 64-entry I1Q, an®8&-&ntry LSQ). Notice also that
in that case, negligible performance drops are observelderVB when the size of the LSQ is
reduced by a half (i.e., a 256-entry RF, a 64-entry VB, a 64yel®, and a 64-entry LSQ). In
addition, if the complexity of the IOC processor is incraiseo significant performance gain
is achieved above the A level. On contrast, in the VB proaegedormance might increase up
to around 32%.

Finally, remark that in between the analyzed cases therewgla gradient of performance
levels (for instance, B and C in Figures 9 and 10). For anyrgperformance level, it is always

possible to find a VB hardware configuration with much less glexity than the required for
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IPC

Fig. 9. Performance of the VB processor when varying the dexity of the RF (Register File), IQ (Issue Queue), ROB, and
LSQ (Load-Store Queue).

the 10C processor.

B. Analyzing the pipeline width

Previous section dimensioned the major microprocessopoasnts. This section goes further
away exploring the complexity of the microprocessor pipely decreasing the fetch/decode/issue
of the baseline processor down to 1 instructions per cycle.

This is much more aggressive than simply resizing the mictogecture components, because
modifying such widths has important implications in conxiig For instance, increasing the
issue width also increases the delay of the rename logie dimat width also determines the
number of ports into the map table and the width of the depateleheck logic. As another
example, reducing the issue width from 4 to 2 ways means tlentumber of read ports in
the register file will drop from 8 to 4. In addition, there araportant area implications. For
example, the number of bypass paths increases with theesqlitine issue width. More details
on complexity issues can be found in [2].

Figure 11 shows the performance reached by the three cothparkitectures when varying
the issue fetch/decode/issue width from 1 to 4 instructipeiscycle. The remaining processor

parameters have been fixed as in Section IlI-B. Results ararf@ble, since a 2-instruction width
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IPC

Fig. 10. Performance of the IOC processor when varying thepbexity of the RF (Register File), IQ (Issue Queue), ROB,
and LSQ (Load-Store Queue).
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Fig. 11. IPC for different fetch/decode/issue widths.

N

VB architecture with a small 8-entry validation buffer rbas the same performance as a I0C
processor with a 4-instruction width and a 128-entry ROBsoAlwith just a single-instruction
issue width and a 16-entry validation buffer, the VB micitatecture reaches performance close
to a much more complex I0C processor with a two-instructiedthvand a 64-entry ROB.

In summary, experimental results evidence that the VB maimiuitecture not only can out-

perform existing in order and out-of-order architectutast also requires much less hardware
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complexity.

V. RELATED WORK

Long latency operations constrain the output rate of the R@ml thus, microprocessor
performance. Several microprocessor mechanisms have reeently proposed dealing with
this problem [24], [3], [5], [4]. In summary, these propasagdermit to retire instructions in
a speculative mode when a long latency operation blocks tB® Read. These solutions
introduce specific hardware to checkpoint the architetttede at specific times and guarantee
correct execution. When a misprediction occurs, the psmresolls back to the checkpoint,
discarding all subsequent computations. Some of thesepatgphave been extended to be used
in multiprocessor systems [25], [26].

In [24], Mutlu et al proposed the run-ahead architecturediai-of-order microprocessors. In
this proposal, the state of the architectural register $ileheckpointed each time a long-latency
memory operation blocks the ROB head. When a checkpointrienpeed, the processor enters
in the run-ahead mode until the long latency instructionsfies. Meanwhile, a bogus value
is distributed for dependent instructions to continue. w8y, this execution mode does not
allow instructions to update the architectural state. Wtien long latency operation finishes,
the processor rolls back to the checkpoint and re-exeche&emstructions in the normal mode,
discarding previous results. The run-ahead executionigeeswuseful prefetching requests (both
instructions and data) as well as effective train for brapadictors.

In [3], Kirman et al propose the checkpointed early loadrestient mechanism which has
certain similarities with the previous one. To unclog theBR@hen a long-latency load instruction
blocks the ROB head, a predicted value is provided for theggeddent instructions to allow
them to continue. When the value of the load is fetched fronmorg, it is compared against
the predicted one. On a misprediction, the processor mildbaok to the checkpoint.

In [5], Cristal et al propose to replace the ROB structurenwat mechanism to perform
checkpoints at specific instructions. This mechanism useAM structure for register mapping
purposes, which is also in charge of the freeing physicaistes. Stores must wait in the
commit stage to modify the machine state until the closestipus checkpoint has committed.
In addition, instructions taking a long time to issue (ethgse dependent from a load) are

moved from the instruction queue to a secondary buffer, freesng resources that can be used
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by other instructions. These instructions must be re-tedento the instruction queue when the
instruction they are dependent on has completed (e.g.ote data has already been fetched).
This problem has also been tackled by Akkary et al in [4].

In [27] Martinez et al propose an in-order retirement medrarnwhich identifies irreversible
instructions to early freeing resources. Unlike the VB marchitecture, this proposal retires
instructions in-order. Also, as well as the works discusseolve, it needs checkpointing to roll
back the processor to a correct state.

In [6], a checkpoint free approach is presented. Howevestilituses a ROB. The proposal
scans then oldest entries of the ROB to select instructions to be rtifEhis fact constrains
this proposal making it unsuitable for large ROB sizes. Iditah, resources are handled as a
typical processor using a ROB, without any focus on imprgvi@esource usage.

Finally, some proposals alleviate the performance degiad@aused by ROB blocking by

enlarging the major microprocessor structures or effigfemanaging them [28], [29], [30].

VI. CONCLUSIONS

This paper has proposed the VB microarchitecture, whichaimed at retiring instructions out
of order while providing support for speculation and preaexception handling. The proposed
microarchitecture does not perform checkpoints becausefearder retirement is correctly
performed by design.

Performance results have been compared against two RGB-g@a®posals, one retiring
instructions in order and the other one in out-of-order if@shRegarding the effectiveness of the
VB buffer, results show that, with only a 32-entry validatibuffer and assuming the remaining
major processor structures unbounded, our proposal ahigerformance similar to the other
evaluated architectures with a 256-entry ROB. The benéfitiseoproposed microarchitecture do
not only apply to the complexity of the VB buffer, but also teetcomplexity of the remaining
major processor structures. In fact, results show thaturesousage is not higher in the VB
while achieving better performance.

Concerning complexity versus performance tradeoffs,lteshow that to achieve a given per-
formance level, the VB microarchitecture requires simpkdware in the major microprocessor
structures (i.e., register file, LSQ, and 1Q) than an in-om@¢irement processor. Moreover, the

VB achieves, with a narrower pipeline width, similar perfance than conventional ROB-based
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processors. This fact brings important implications instharchitectures where the microarchi-
tecture complexity is one of the most important issues, @gwer-aware and SMT processor
implementations.

In summary, the VB has been shown to behave as a complexégtieE microarchitecture,
which makes the proposal attractive to either achieve bptggormance or reduce complexity

for a given performance level.
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