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Abstract

High-performance microprocessors, e.g., multi-
threaded and multicore processors, are being imple-
mented in embedded real-time systems because of the
increasing computational requirements. These com-
plex microprocessors have two major drawbacks when
they are used for real-time purposes. First, their com-
plexity difficults the calculation of the WCET (Worst
Case Execution Time). Second, power consumption
requirements are much larger, which is a major con-
cern in these systems.

In this paper we propose a novel soft power-aware
real-time scheduler for a state-of-the-art multicore
multithreaded processor, which implements dynamic
voltage scaling techniques. The proposed scheduler
reduces the energy consumption while satisfying the
constraints of soft real-time applications. Different
scheduling alternatives have been evaluated, and ex-
perimental results show that using a fair scheduling
policy, the proposed algorithm provides, on average,
energy savings ranging from 34% to 74%.

1 Introduction

Embedded systems are experiencing a growth of
the number of functionalities they incorporate. Among
others, they can act as phone cells, PDA’s, car on-
board systems, etc. Due to the performance re-
quirements of these applications, high-end embedded
processors nowadays are including complex mecha-
nisms developed for high-performance architectures,
such as pipelining, dynamic prediction, out-of-order
execution, or dynamic multithreading. For exam-
ple, the Ubicom IP3023 [28] implements 8 hardware
threads, while the ARM11 [19] incorporates an 8-

stage pipeline, caches, and dynamic branch prediction.
Moreover, multicore implementations of the ARM11
have been performed [13].

Unfortunately, these high performance techniques
difficult the calculation of the WCET (Worst Case Ex-
ecution Time) of real-time tasks. A major concern
is to guarantee the deadline constraint of a real-time
task executed by a thread when it has to concurrently
run with other threads [11, 2]. A simple solution,
like running the real-time tasks alone to guarantee pre-
dictability, can degrade dramatically the overall per-
formance [5]. To deal with these aspects, the scheduler
should be able to control more precisely the sharing of
processor’s internal resources by real-time tasks.

On the other hand, the application of high-
performance techniques in embedded processors re-
quire, as an important side effect, much larger amounts
of energy. Therefore, research on energy-aware tech-
niques for embedded processors has been gaining sig-
nificance [14, 26, 29].

In this context, dynamic voltage scaling (DVS) [14]
is a widely implemented techniques for energy ef-
ficiency. For instance, the Transmeta Crusoe [8],
the Intel Xeon [7] and the Mobile AMD DuronTM
[9] implement DVS. This mechanism entails reduc-
ing the system energy consumption by reducing the
CPU supply voltage and the clock frequency simul-
taneously. However, the provided energy gains in-
crease the thread execution times, so creating condi-
tions where the system is overloaded that can jeopar-
dize the schedulability of real-time tasks [1, 3, 20].

Due to the reasons described above, new real-
time schedulers addressing multithreaded and mul-
ticore embedded environments are required. These
schedulers must aim to keep low the energy consump-
tion while adapting the processor speed to the require-
ments of the real-time loads. In other words, scheduler



must the trade-off real-time constraints versus energy
savings.

This paper focuses on design issues of a real-time
power-aware scheduler for a high-performance em-
bedded processor (i.e, multithreaded and multicore).
This scheduler adapts the global frequency of the cores
to the computation requirements of soft real-time tasks
while improving energy savings. The scheduler pur-
sues to minimize the number of DVS transitions by
increasing or decreasing the voltage and frequency of
all the cores at the same time. Frequency increases
when it is required to satisfy the time requirements of
real-time tasks. On the the other hand, when a task
finishes its execution, if its computation time can be
guaranteed, the frequency is reduced.

The proposed scheduler has been evaluated on a
model of a current high-end ARM embedded micro-
processor (used in several of devices, like Nokia N95,
HTC TN II , Qualcomm MSM7200, Sony Ericsson W
series, Nintendo DS, iPod) executing a set of standard
benchmarks of the EEMB [6] and the MediaBench
suites [18] and the WCET analysis project Benchmark
[24].

The remaining of this paper is structured as follows.
Section 2 discusses important research on the topic of
energy management of real-time systems. Section 3
describes the proposed scheduling algorithm and the
modelled system. Section 4 evaluates the algorithm
and analyzes the experimental results. Finally, section
5 presents some concluding remarks.

Figure 1. Modelled task queue and multi-
core system.

2 Related Work

There are three main models used to implement
multithreading capabilities in current commercial pro-
cessors: fine grain multithreading, coarse grain multi-
threading and simultaneous multithreading [25]. For

example Intel’s Montecito [21] implements coarse
grain multithreading while the Sun’s Niagara multi-
core architecture [16] presents one fine grain multi-
threaded pipeline per core. Finally, several simultane-
ous multithreading implementations exist in the mar-
ket [12, 15].

Although, in general, fine grain and simultaneous
multithreading approaches offer more performance by
allowing dynamic sharing of pipeline resources in a
cycle-by-cycle basis, guaranteeing a-priori the WCET
of real-time tasks sharing the processor resources un-
der these models becomes extremely difficult. There-
fore, in this paper, we assume a coarse grain model,
which switches threads on long latency events, as clas-
sical multitask operating systems do.

Despite the large amount of research focussing
on multithreading, to the best of our knowledge, no
power-aware scheduling algorithm has been published
dealing with both coarse grain multithreaded proces-
sors and real-time constraints.

A large amount of research papers have explored
energy management on uniprocessor real-time sys-
tems. Most of them focus on periodic task systems
[20, 31], but also some proposals have been published
dealing with aperiodic tasks [23] and sporadic tasks
[22]. Buttazzo et al. [20] present an algorithm for
energy management based on DVS that integrates the
elastic scheduler for discrete voltage mode processors.

Some research studies have addressed the prob-
lem of energy management in multiprocessor plat-
forms when running real-time tasks [4, 1, 3]. In [4]
the problem of reducing energy for periodic real-time
tasks in symmetric multiprocessors using DVS is pre-
sented. The EDF (Earliest Deadline First) algorithm
analyzes the effect of partitioning heuristics. In [1],
Al Enawy et al. consider the problem of energy min-
imization for periodic preemptive hard real-time tasks
that are scheduled on a symmetric multiprocessor plat-
form with DVS capability. They adopt partitioned
scheduling and assume that tasks are assigned static
rate-monotonic priorities. In [3], Baruah addresses the
system synthesis problem of periodic real-time tasks
on identical multiprocessors using global scheduling
with EDF.

Some research has also focused on multithreaded
processors. In [5] Cazorla et al. present an architec-
ture where an SMT interacts with the OS to improve
performance. The OS specifies the predictable perfor-
mance threads (PPT) to be executed at a given fre-
quency while the non-PPT use the resources that the
PPT do not need. However, the problem of combining
energy management with the schedulability guarantee



Initial state: both cores are switched off

Filling cores: applies when there is a ready task T

Step1: Is there any core empty?
If so, if core A is empty then launch T to core A,

otherwise launch T to core B
If not, go to step 2.

Step2: Launch T to the core less loaded,
If both cores are equally loaded then

increase frequency and launch T to core A.

Reducing frequency: applies when a task T finishes

Step3: Are both cores equally loaded?
If so, reduce frequency

Table 1. Scheduling algorithm.

of real-time tasks is not resolved. Moreover in [11]
Rotenberg states that SMT processors difficult prov-
ing hard-real-time guarantees, and proposes a virtual
in-order superscalar architecture that allows the virtu-
alization of a superscalar in various processors. This
architecture incorporates a static scheduler to execute
periodic tasks. They compare their scheduler to the
EDF for multiprocessors in terms of rate of deadline
misses. Therefore, the schedulability of hard real-time
tasks is not guaranteed and the energy management is
not tackled.

3 System Architecture and Scheduling
Algorithm

The system modelled in this work consists of a
coarse grain multithreaded multicore system with a
task queue feeding the scheduler as shown in Figure
1. Although the results can be extended to any number
of cores, for evaluation purposes (see Section 4.3) we
consider a bi-core.

This scheduler works as follows. When a task fin-
ishes its execution it comes back to a global task queue
structure. This queue is read by the scheduler, which
launch them to the corresponding core. Soft aperi-
odic tasks are characterized by the minimum inter-
arrival time parameter. This parameter is modeled by
λ. Tasks are launched at aλ rate, i.e., the inter-arrival
time is 1/ λ units of time. This time refers to the
time that the scheduler waits between the submission

of two consecutive tasks to the system. It has been
chosen three values of lambda to analyze its effect on
the consumption of energy. For evaluation purposes
it has been assumed the stand-alone execution time of
the slowest task in the mix as thebaselineinter-arrival
time. However, as the processor effectiveness will de-
pend on the inter-arrival time, different scenarios have
been analyzed. To this end, the baseline inter-arrival
time has been multiplied by a given factorK (i.e., 1,
1.5, and 2).

The proposed algorithm aims at minimizing the en-
ergy consumption while ensuring that the WCET of
the running tasks is fulfilled. We have assumed a sim-

Table 2. Machine Parameters.
Microprocessor core

Issue policy In order

Fetch kind Switch on event

Branch Prediction Two-level global history

256 entries BTB, 4096 2-bit

saturating counters GHB

13 cycles misprediction

Issue bandwidth 2 instructions/cycle

# of Integer ALU’s, multiplier/dividers 2,1

# of FP ALU’s, multiplier/dividers 2,1

Memory Hierarchy

Cache memory Disabled

Memory access latency 100 cycles



ple model where one core working at its lowest speed
can guarantees the WCET of one only task running
in it with low speed. If two tasks are being executed
in the same core, to guarantee their WCET the core
must run at medium speed, and if the number of tasks
running in the same core is three or more, the speed
must be the highest one. Static schedulability analy-
sis of the system has been performed off-line to state
the previous hypothesis. A static schedulability analy-
sis for all the situations arising in the system has been
performed during the design phase. This analysis has
taken into account the execution times and deadlines
of the benchmarks and the inter-arrival rate parameter.

In the initial state, both cores are switched off, so
consuming no power. Then, when a task is ready to
run,one core is switched on and starts working at its
minimum speed. Then, if another task is ready, the
scheduler estimates if that core satisfies the WCET of
both of the tasks, (i.e., the running one and the incom-
ing one), at the current speed. If this is not possible, the
second core is also switched with the minimum speed.
From this point, if we cannot guarantee the WCET of
additional incoming tasks we increase the frequency
up to the maximum one. As tasks finalize this process
is reversed, reducing the frequency and shutting down
the cores on an individual basis. Table 1 shows a de-
tailed description of the Scheduling Algorithm.

The proposed algorithm globally increases and de-
creases the voltage and frequency of both processors
at the same time. Although it is possible to use dif-
ferent voltages and frequencies in each processor (i.e,
per-core DVS), this option is more complex and ex-
pensive, since it requires more voltage regulators and

Table 3. Description of Benchmarks.
Name Description
Adpcm Speech compression and decompression

algorithm
Crc Cyclic redundancy check

computation on 40 bytes of data.
Fft1 1024-point Fast Fourier Transform

using the Cooly-Turkey algorithm.
Fir Finite impulse response filter

over a 700 items long sample.
Lucmp LU decomposition algorithm
Fdct Fast Discrete Cosine Transform.
Mpeg Lossymotion video compression decoder
G721 Voice compression coder based on G.711,

G.721 and G.723 standards (encode,decode)
Rawc Speech compression algorithm

complicates the power delivery network. In addition,
it has been shown [10] that global DVS can have an ef-
ficiency very close to per-core DVS if the load is fairy
balanced.

Table 4. Benchmarks characteristics
Tasks Execution Memory CPU Overlap

time (K) inst.(%) time(%) (%)

crc 171.0 21.6 59.5 2.0

fft1 47.8 24.5 63.0 10.2

ludcmp 57.5 24.5 61.4 7.4

fdct 50.1 24.8 59.6 5.4

fir 51.1 23.6 61.2 6.3

rawc 9400 6.4 88.8 4.7

adpcm 1008.2 23.9 64.1 3.5

mpeg 18900 22.1 72.4 19.2

encode 21800 26.5 56.7 5.2

decode 21900 26.6 56.6 5.0

4 Experimental Results

The proposed techniques have been evaluated on
top of the Multi2Sim simulation framework [27]
which was extended to implement a scheduler (i.e., the
proposed algorithm) and to support the input of tasks
in an aperiodic manner (softrealtime).

This section evaluates a bi-core multithreaded sys-
tem, where the microarchitecture of each core resem-
bles the embedded ARM 11 microprocessor. Table
2 summarizes the architectural parameters. Experi-
mental results were obtained by using mixes of ap-
plications from the Mediabench and EEMBC. Table
3 shows a description of these benchmarks.

4.1 Workload characterization

Since the characteristics of the load can have influ-
ence in the energy consumed, before designing mixes
it is important to explore the execution requirements
of each benchmark in the underlying system. To this
end, this section analyzes for each benchmark, its
computation-memory requirements as well as the po-
tential overlapping among these resources.

Table 4 shows the results obtained for the EEMBC
and Mediabench benchmarks suites respectively. As



observed, the EEMBC benchmarks are much shorter
(e.g, on the average, several orders of magnitude)
than the Mediabench ones. On the other hand, the
percentage of memory instruction in between 21 and
27% across all benchmarks falls, with the exception
of rawd andrawc from Mediabench where that per-
centage is below 7%. The memory-CPU overlapping
has been obtained attending to the percentage of time
that the processor spends with memory or CPU and
comparing it with the total execution time quantified
in processor cycles. Looking at this result, we can see
that in some applications this value is quite low despite
their percentage of memory instructions, since only in
mpeg andfft1 is over 10%.

4.2 Scheduling Mix Analysis

Performance of multithreaded multicore processors
depends on the mix of programs that are running at
the same time. In other words, the time that a program
takes to run will not depend only on its computation
requirements but also on the ones of its co-runners.
Therefore, the scheduler not only must select the task
to be launched (e.g., a critical task) but also the ap-
propriate core. The core must be selected according
to the computational requirements of the tasks already
running in each core.

For instance, suppose that the scheduler sends two
tasks with a large execution time to core A and two
shorter tasks to core B. Then, when both tasks in core
B complete execution, the ones in core A will be still
running. Therefore, the processor speed cannot be de-
creased, so wasting energy since core B is not perform-
ing any work. On the other hand, when tasks are fairly

Table 5. Using different workload balanc-

ing strategies.
Scheduling K Execution Memory F400 F200 F100

policy time (M) time (%) (%) (%) (%)

1 59.10 0.71 0.94 0.05 0.01

Fair 1.5 71.67 0.57 0.60 0.37 0.03

2 83.03 0.49 0.40 0.58 0.02

2.5 88.39 0.47 0.33 0.63 0.04

3 90.93 0.45 0.30 0.66 0.04

1 56.44 0.69 0.97 0.01 0.02

Poor 1.5 55.42 0.62 0.95 0.03 0.02

2 61.21 0.57 0.93 0.03 0.04

2.5 64.24 0.57 0.91 0.04 0.05

3 67.45 0.40 0.90 0.05 0.05

balanced among cores (so that long tasks are equally
running in both cores), then the processor speed can
be decreased as soon as the shorter tasks finish their
execution.

This example, illustrates two opposite scheduling
strategies. We refer asfair balanceto the policy that
launches complementary tasks to same core and as
poor balanceto the policy that does not take into ac-
count how complementary tasks are.

Table 5 shows the results for the same mix sched-
uled using afair balanceand apoor balancepoli-
cies. Columns F400, F200, and F100 refer to the per-
centage of time that the processor runs at 400MHz,
200MHz and 100MHz respectively. The mix is com-
posed by thedecode, encode, mpeg, rawd, adpcmand
crc benchmarks. In the fair balance policy, one core
receives thedecode, mpeg, adpcmbenchmarks and
the other one theencode,rawd and crcbenchmarks.
In this way, both the long ones as the short ones are
equally distributed among cores. As opposite, in the
poor balance policy, the long ones run at the same
core. As a consequence, the processor is nearly all
the time running at its maximum frequency (i.e., F400
> 90%). As observed, the percentage of time that the
system is working at its maximum speed is strongly
related with the inter-arrival time length (i.e., the fac-
tor K explained in Section 3). Finally, notice that for
a given mix, a higher percentage of time accessing to
memory incurs a higher percentage of time of the sys-
tem working at its maximum speed.

4.3 Estimating Energy Savings

As the time running at a given frequency depends
on the scheduled mix, the energy savings will show

Table 6. Mixes.
Mix Name Order of the used Benchmarks

Mix 0 crc, ludcmp, adpcm, fir, fdct, fft1

Mix 1 fft1, crc, fir, ludcmp, adpcm, fdct

Mix 2 crc, fft1, fir, adpcm, ludcmp, fdct

Mix 3 fir, ludcmp, crc, fdct, fft1, adpcm

Mix 4 crc, adpcm, fdct, ludcmp, fir, fft1

Mix 5 ludcmp, adpcm, fdct, fft1, crc, fir

Mix 6 ludcmp, crc, fir, fdct, fft1, adpcm

Mix 7 fft1, fir, adpcm, ludcmp, crc, fdct



the same dependency. This means that the scheduling
algorithm must be clever enough to discern between
long and short tasks. To explore different scenarios
about the energy gains that the algorithm could pro-
vide, different mixes have been designed. All of them
fall in the fair balancepolicy since all submit at least
one long benchmark to a given core. Table 6 shows the
evaluated mixes.

Regarding frequency and voltage relationships, as
mentioned in Section 3, we assume that the proces-
sor can work using three frequency speeds, each one
using a different voltage level. Table 7 shows the as-
sumptions about the energy consumed per cycle when
working a 400MHz, 200MHz and 100MHz respec-
tively. These values have been chosen according to
the ones of the Pentium M processor [17, 30].

Power results were obtained running each bench-
mark until the simulator commits 3 milions of instruc-
tions. For each execution, we measured the number of
cycles that the system works in a given frequency and
multiplied this value by the corresponding energy per
cycle.

For power comparisons purposes, for each factor,
we have considered as unit the most consuming mix
(i.e, m6) when running the processor at its maxi-
mum frequency, then, relative power savings are ob-
tained for the remaining mixes when applying both the
power-aware algorithm and the simple scheduler. Fig-
ure 2 plots the results.

Three main conclusions can be drawn:

• Regarding the proposed algorithm, in general,
power savings are higher as wider the inter-arrival
time (i.e., long periods). This is because of the
number of tasks in the system varies more fre-
quently, thus, the algorithm is applied much more
times. For instance, if the system would be over-
loaded most of the time, the algorithm would
bring minor benefits.

• Independently of the inter-arrival time (factor 1,
1.5 and 2), the scheduling policy (either the algo-
rithm is applied or not) allows to achieve power
savings. Results show that only varying the
scheduling policy, power savings could provide

Table 7. Energy spending by Frequency.

frequency [MHz] 400 200 100

energy [pJ/cycle] 349.2 186.3 123.8

benefits, on the average, by about 25%, 61%, and
44%, for factor 1, factor 1.5, and factor 2, respec-
tively.

• The benefits of the algorithm not only depend on
the algorithm itself but also on the baseline sched-
uler, that is, it might happen that applying the
algorithm with a bad base task selection policy,
could increase the power consumption. However,
combining the algorithm with a given baseline
scheduler (i.e., the same mix in the Figure) the al-
gorithm always brings important power savings.
Results show that, on average, these benefits are
34%, 73%, and 74%, for factor 1, factor 1.5, and
factor 2, respectively.

(a) Factor 1

(b) Factor 1.5

(c) Factor 2

Figure 2. Relative Power.



5 Conclusions

This paper has introduced a novel power-aware
scheduling algorithm for a state-of-the-art coarse-
grain multithreaded multicore processor addressing
soft real-time applications. The proposed algorithm
applies dynamic voltage and frequency scaling, and
adjust the processor speed to the running soft real-time
workload. The scheduling algorithm has been evalu-
ated using different mixes of benchmarks on a bi-core
multithreaded embedded processor.

Experimental results show that power-aware
scheduling algorithms can be designed for a given
frequency and voltage level, however, if dynamic
voltage scaling techniques are applied the power
savings can be much larger. Power savings have
been explored in three different scenarios (varying
the inter-arrival time) and experimental results show
that, on average, savings provided by the proposed
algorithm are about 34%, 18%, and 67% across the
scenarios.

As for future work we plan to design and evaluate
schedulability tests for hard real-time tasks and their
combination with soft real-time tasks.
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