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Abstract. Current superscalar processors access the BTB early tcipatie the
branch/jump target address. This access is frequent anceagiyely performed
since the BTB is accessed every cycle for all instructionlsériCache line being
fetched. This fact increases the power density, which atrelate hot spots, thus
increasing packaging and cooling costs. Power consumptiche BTB comes
mostly from its two main fields: the tag and the target addfesdds. Reducing
the length of either of these fields reduces power consumpgilicon area and
access time. This paper analyzes at what extent tag andttadgiress lengths
could be reduced to benefit both dynamic and static poweruropton, silicon
area, and access time, while sustaining performance. Exypetal results show
that the tag length and the target address could be reduceabbyt a half and
one byte, respectively with no performance losses. BTB peakr savings can
reach about 35% when both reductions are combined togetines, effectively
attacking the hot-spot.

1 Introduction

Traditionally, a key issue to improve microprocessor penfance has been the clock
frequency. The higher the clock frequency, the faster tloegssor is able to execute
instructions. However, such increase in clock frequeneidgito an increase in the pro-
cessor power consumption. As the frequency has kept ritiregpower consumption
and the corresponding package and cooling costs have bgohibitive, constraining
such trend. It has been estimated [1] that heat dissipabouea30-40 watts increases
the total cost of thermal packaging and cooling per chip byeriban one dollar per
watt. The costs can be as high as those derived from a 130\Wissgiation [2]. Con-
sequently, power consumption has become nowadays a majooprocessor design
concern. Power consumption can be reduced by either regltloinstatic power (i.e.,
the power consumed due to transistor leakage currents) randiz power (i.e., the
power consumed due to transistor switching).

Focusing on the average power is important when designingpbmited devices
constrained by the power supply such as batteries. Howpwerr is not distributed
uniformly across the chip area but on specific structuresttier words, the different
microprocessor structures present different power desdi8]. Those structures with
highest density may trigger thermal emergencies when wgrat peak power, and are
referred to as thermal hot-spots. These points are the ragronsible for the costs of



Table 1. Increase of temperature per cycle

Component Area (mm?)|Peak power (W)remp. increase (°¢)
Load/Store Queue 0.5 2.7 0.7e-3
Instruction Windo 0.9 10.3 3.1le-3
Register File 0.25 55 2.6e-3
Branch Predictor 0.35 5.3 5.2e-3
L1 Data Cache 1.0 11.6 2.6e-3
Integer Units 0.5 4.3 2.5e-3
Floating Point Units 0.5 6.7 2.6e-3

thermal packaging and cooling solutions, since they mudtisegned to operate at peak
power (even if peak power is rarely reached). That meanstthallow high frequencies
while keeping the packaging and cooling costs at a reaserwaist, solutions should
address hot spots.

On the other hand, in current microprocessors, deep pgeliave become predom-
inant in order to allow high clock speeds. In these microéeckures, the fetch stage
bandwidth must be high enough to efficiently feed the remaistages. In this context,
fast handling of branch instructions is important becahsg tan stall the fetch stage
until their direction (i.e., taken or not taken) and targadi@ss are known, thus drop-
ping the performance. To deal with control hazards, brametiption techniques have
been extensively studied during the last decade [4-8].

The branch predictor can be accessed multiple times evetg.cyhus, this struc-
ture presents a high power density. Because of this reasisngmne of the scorching
hot-spots in the processor. This fact can be appreciatealeTL, which shows the
temperature increase per cycle reached by different maioegsor structures when
working at 1.5Ghz (peak performance). These results aieedefrom the model de-
tailed in [9] for a processor model similar to the Alpha 21264hg a 100°C baseline
temperature. Notice how the branch predictor, despitengeane of the smallest areas,
is the main heat contributor in the list.

A major structure of the branch predictor is the branch tabgéfer (BTB), and
it constitutes an important percentage of its heat. The Ba8 theen implemented in
modern microprocessors in two different ways. In some meoes, the BTB performs
both predictions (target address and direction). Howemest current microprocessors
decouple the target address prediction, which is perforbyed BTB table, from the
branch direction, which is performed by a branch predictarcsure. This decoupled
implementation has been the model addressed in this paper.

Different works have been proposed to reduce power consomiot the BTB. In
this paper, we study at what extent power consumption mightebluced by merely
reducing the tag length, the target address or both. By iedtice power consumption
of the BTB without adding any extra hardware, we reduce ttek pensumption of a
major hot-spot of the processor. The benefits of this redoetie twofold. On one hand,
packaging and cooling costs can be decreased, while onltkee lvéind, there are more
opportunities for increasing the processor frequency. él@r, as a side effect, both
branch direction and target address misprediction risgtwiay negatively impact on
performance.



This paper analyzes the effects of reducing the tag and tettaddress bits of the
BTB on power, energy, area, access time, and performanperixental results show
that the tag length and the target address could be reducaabloy a half and one byte,
respectively with no performance losses. When both tectesiGare applied together
savings can reach about 35%. Notice that, as we propose wineddechnique, these
benefits consistently apply regardless of whether the BTBadeing or not at peak
power. Thus, the hot-spot is effectively attacked.

The remaining of this paper is organized as follows. Sec@aliscusses some re-
lated work. Section 3 summarizes the proposed reductioheoBITB tag and target
address length, and its pros and cons. Section 4 analyzexpeeimental results and
finally, some concluding remarks are drawn.

2 Reated Work

Important research work has focused on reducing the BTB poarsumption. Some
of these works attempt to reduce the power consumption iBif by reducing the
number of accesses [10-12], while other approaches aptig afrcuit level [13, 14].

Regarding the first approach, Petrov and Orailoglu [10] psepa mechanism that
uses control flow information (e.g., basic block lengthbamed at compile time. This
information is stored in a table called the ACBTB (ApplicatiCustomizable Branch
Target Buffer). Two auxiliar registers are used, one to ttluienumber of instructions
until the next branch, and other to index the table. When thenter reaches zero, the
ACBTB is accessed to read the target address. Then, theasasinpdated with a value
according to the stored control information.

Deris and Baniasadi [11] propose the Branchless Cycle étiedi(BLCP) that uses
a structure to predict which cycles the ICache line has nadirgbranchless cycles).
Thus, there is no need to access the BTB. To this end, a smaltlaGHistory Shift
Register (GHR) and a Prediction History Table (PHT) are us&éé GHR records the
history of the branch and the branchless cycles. This tatdlexies the PHT, which
predicts whether a branch instruction will be fetched inrtegt cycle. If the prediction
is false, the BTB is not accessed. The technique proposedleyrfoet al.for VLIW
architectures [12] uses a branch detector that partialydecodes instructions to find
possible branches, in order to access the branch predigiick selectively, and thus
to the BTB.

Regarding the second approach, Chasteal. [13] propose an adaptive resizing of
the BTB. To this end, some portions of the BTB are selectidédabled using dynamic
cache resizing techniques.

Hu et al. [14] apply decay strategies which, from time to time, switdhspecific
entries in the BTB, so reducing leakage energy at the expeinseme performance
loss.

Unlike these techniques, this paper neither reduces thdeuaf accesses nor dis-
ables BTB entries. Instead, we analyze how power consumgpé#o be saved by reduc-
ing the number of bits in the BTB, so saving power consumpfiorevery performed
access. In this way, we address not only average power sabirigalso thermal pack-



aging and cooling costs. Nevertheless, notice that thesafentioned techniques are
orthogonal to our approach, so they can be applied all tegeth

3 Proposed M echanism

The branch target buffer is implemented like a cache strathat has two main fields:
the tag and the target address. The tag field is comparedhv@tbarresponding bits of
the PC of the instruction being fetched. On a hit, if the bhapgediction outcome is
taken, the stored target address is written to the PC, otberivis discarded. When the
real target address is calculated later in the pipelinsg, édoimpared with the predicted
one. If the prediction fails, the BTB must be updated with¢berect target address.

In modern microprocessors, the BTB is accessed at the samaas the instruction
cache. At this point, it is not known whether the instructimring read is a branch or
not. A straightforward solution to force that only branchasy hit the BTB is to store
in the tag field the whole branch address (i.e., its PC). Ofsmlif some of these bits
are used to index the BTB (i.e., implemented as a set-ass@diable), there is no need
to store all of them. In addition, as memory is usually bytdradsable but instructions
are word aligned, some least significant bits of the insibastaddress can be discarded
since they are always equal to zero.

Another key issue is to analyze the relationship betweertarget address of a
branch and its PC (i.e., how distant they are). In this séfiseth PCs are close enough,
they will share some of the most significant bits. In such a&gc#dghe target address
field is reduced, the BTB would provide only a fraction of saldress, but the final
address could be obtained by using the most significant bitseoPC accessing the
BTB.

The key issue behind the proposal is to reduce the numbeor@itsbits in the BTB
in order to remove static and dynamic power consumed by thieseAs a side effect,
area and access time are also reduced. The proposal attactegot main parts of the
BTB (i.e., the tag and the target address).

3.1 Reducing the number of Tag Bits

Reducing the number of tag bits might affect the hit ratia;ehese phantom branches
and branch aliasing could arise. This section discussespact of reducing the tag
field on these negative effects.

The problem raises because there could be more than onecithatr matching the
same tag (of course, only one of them is the correct one)rdégss of whether they
are branch instructions or not, therefore resulting in BTBsapeculations. This kind
of misspeculation is named in two different ways dependimg/bether the instruction
causing it is a branch or not.

A phantom branch is a non-branch instruction that hits thB Bffius, it is executed
as a normal branch. Consequently, if it is predicted takes RC is updated with the
target address read from the BTB and a wrong inflow of insimastis inserted in the
processor pipeline until the misprediction is detecteds Thjust like a common branch
misspeculation, but in this case, it can be detected mudleedr.e., when decoding



the instruction at the decode stage). Thus, it is not nepessavait for the branch to

be resolved later in the pipeline to recover the machine tceaige state. Notice that
only the fetched and not yet decoded instructions are &ifiecthus, the only action
to be done is to squash those instructions, without affgdtistructions from the ROB

neither the mapping table.

Branch aliasing refers to different branches that matclsénee tag in the BTB. The
problem is that any of these branches might be predictedtivittharget address of any
other, what would incur a BTB misprediction. This mispreitio is detected when the
target address is calculated later in the pipeline, anddvoalise branch misspeculation
if the branch is predicted taken. Notice that this case carabeled as a normal branch
misspeculation. Thus, to recover from this misspeculatiogre is no need to add extra
logic.

Reducing the tag length, not only reduces the number of mgowils but also the
comparator size (i.e., the number of XOR gates). This fatitpeisitively impact on
both static and dynamic power. In addition, the area, theudidelay and, the BTB
access time will be also reduced.

3.2 Reducing the number of Target AddressBits

The field storing the target address in the BTB may be redugetimoving either
of its bits. However, as instructions are stored in contimumemory addresses, they
share their most significant bits. Thus, only a subset of ttserhight be stored in the
BTB and the effective target address could be computed bgatenating the most
significant bits of the PC of the instruction accessing theBBith the fraction of
the target address stored in the BTB. In such a case, thegonoBlthat the effective
target address might be wrong, thus introducing BTB misiptichs that would result
in branch misspeculation if the branch was taken. This kindisspeculation is handled
as a normal branch misspeculation, thus there is no needltexiich logic to detect and
recover from it. On the other hand, the benefits of reducieddiget address length are
similar to those of reducing the tag length, since a redadtidhe number of memory
cells is applied.

Again, there is a tradeoff between power, area and access éind performance
loss. Thus, a fair analysis should take into account theradgas and shortcomings of
reducing the tag and target address lengths. The key issoidoisk for how many bits
could be removed without hurting the performance.

4 Experimental Results

Experiments were run by using the Multi2Sim simulation feawork [15], which was
extended to support differenttag and target address lspggecting phantom branches
and branch aliasing, and the SPEC2000 benchmark suite$Mdekload. To measure
the energy, area and cycle time of the BTB, the CACTI 4.0 t4d@l,[a widely used
cache timing and power model, has been used.

Experimental results have assumed a 32-bit address mamegsor configuration
as shown in Table 2, with a baseline 4-way 512-set BTB impfleetbusing 65 nm
silicon process.



Table 2. Machine Parameters.

Microprocessor core

Branch predictor Hybrid gShare/bimodal

gShare 4KB 2-bit counters

Bimodal 4KB 2-bit counters

Choice Predictor 4KB 2-bit counters

BTB 512 sets, 4 ways, 13 cycles mispredictfon,

3 cycles phantom branch penalty
Decode/lssue/Retire bandwidlthinstructions/cycle

# of Int ALU’s, mult/div 4,1
# of FP ALU’s, mult/div 2,1
Memory Hierarchy
L1 data cache 64KB, 2 way, 64 byte-line
L1 data cache hit latency 1cycles
L2 data cache 512KB, 4 ways, 64byte-line
L2 data cache hit latency 10 cycles
Memory access latency 200 cycles
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Fig. 1. IPC losses when reducing the tag length

4.1 Reducing Tag Bits

First, the effect of reducing the tag length has been ewadliatone (i.e., without re-
ducing the target address length). Note that the lengthetdl stored in the BTB,
without applying any reduction in baseline processor, rha21 bits. Thus, the anal-
ysis starts assuming a 21-bit tag BTB, and this length isq@sxively reduced on 1-bit
steps, down to zero bits.

Impact on Performance. As far as the tag length is reduced, performance (i.e., IPC)
drops as phantom branches and branch aliasing rise. Figaystows how phantom
branches and branch aliasing impact on the IPC. As obseifwed use less than 9-10
bits, there is a strong impact on performance, but usinggukd-bit tag (about three
times smaller) the performance loss is almost negligibigufe 1(b) shows the IPC
losses due only to branch aliasing (by using branch predeghdn this case, the tag
could be reduced to 6-7 bits without negatively impactinggrenance. Therefore, the
highest fraction of performance losses comes from phantamches.

Impact on Energy, Area and Access Time. Reducing the tag length also brings
hardware benefits, since it reduces the energy consumfimsilicon area and the ac-
cess time of the BTB. These benefits have been measured gahgitag size from 21

121 =32 -2 (4-byte words) — 9 (512 sets)
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down to 2 bits. Power savings have been calculated takiogiotount the whole exe-
cution time. For the dynamic power, first CACTI has been useddasure the energy of
a single access to the BTB with every tag length. Then, thesggnhas been multiplied
by the number of accesses during the execution time. Fotdkie power, the transistor
has been taken as consumption unit and the static energyekashlculated for every
tag length. Then, this energy has been multiplied by the rarrmobexecution cycles.

Notice that under performance loss conditions (higher @tkec time), this analysis is

optimistic because the extra energy consumed by processatuses other than the
BTB had not been accounted. Nevertheless, in the absenesfofimance losses (e.g.,
a 10-bit tag length) this analysis remains valid.

Figure 2(a) and Figure 2(b) show the dynamic and static p@@asumption re-
spectively. As expected, as the tag length is reduced, thig®iver is also decreased.
However, notice that, for some applications, a very low taggth gives no further im-
provements due to increased accesses to the BTB in casepfuditions. A 9-bit tag
length BTB, which has been shown to have no impact on the psocgerformance,
has about 20% less dynamic power consumption and about 28tktic power con-
sumption.
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Finally, Figure 3 and Figure 4 show the results for area amgsstime. Both of
them are reduced as the number of tag bits decrease. Agaibit 2@ length gives a
good tradeoff, requiring about 20% less silicon area andaied) the access time about
6%.

4.2 Reducing Target Address Bits

This analysis assumes an initial 32-bit target addressthenghich is progressively
reduced down to zero bits while keeping fixed the baselirgetaaddress length. Due
to space restrictions, results are not plotted but they iaceigsed.

Impact on Performance. As the target address length is reduced, performance
drops due to BTB address mispredictions that, in case ofchranedicted as taken,
results in a branch misspeculation. Results show that IBSekbrise as the target ad-
dress length is reduced down to 21 bits for all applicatidhgiothan applu and bzip2.
The explanation is that, in these cases, some BTB mispiedicare hidden due to
branches predicted as not taken, thus no branch mispesukgtipears. Consequently,
there is no negative impact on the IPC.

Impact on Energy, Areaand Access Time. Regarding power savings, results show
that a good tradeoff value could be a 24-bit target addrelsk fidich achieves across
the different applications by about 15% and 20% of dynamétstatic power savings,
respectively. More aggressive target address reductamatically impact on perfor-
mance, and as a consequence, increase the energy budgetr@og silicon area and
access time improvements, results show that a 24-bit tadgtess length achieves
about 7% area reduction, decreasing the access time by @%out

4.3 Combining Tag and Target Address Reduction

This section explores the impact of reducing simultangotie number of bits in the
tag and the target address fields. To this end, we assume alfixbd tag since, as
shown above, it is the smallest size with no performancekdsigures 5, 6, 7, 8, and
9 plot the results. As expected, when combining both redustilPC losses begin to
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arise for target address lengths shorter than 24 bits. Hhtisis point is when we reach
the major benefits without hurting performance, achievengrgys of 32%, 35%, 26%,
and 12% in dynamic energy, static energy, area, and acoessréspectively.

5 Conclusions

The BTB is a key structure of the branch prediction unit, whgcaggressively accessed
every cycle, and acts as a major hot-spotin current micigasors. This work has an-
alyzed how both BTB dynamic and static power consumptiorbeasaved by reducing
the tag length, the target address length or both. Cons#gusticon area and access
time are also reduced. Side effects, such as possible adwgpacts on performance or
extra energy due to performance dropping, have been al$grada
Results show that a 10-bit tag has no adverse impact on peafare while pro-

viding important benefits (e.g., by about 17% of power sasjnghese results can be
improved if target address is simultaneously reduced. f&tance, using a 10-bit tag

length with a 24-bit target address length, power savinga/gip 35% with no perfor-
mance losses.
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