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Abstract. Current superscalar processors access the BTB early to anticipate the
branch/jump target address. This access is frequent and aggressively performed
since the BTB is accessed every cycle for all instructions inthe ICache line being
fetched. This fact increases the power density, which couldcreate hot spots, thus
increasing packaging and cooling costs. Power consumptionin the BTB comes
mostly from its two main fields: the tag and the target addressfields. Reducing
the length of either of these fields reduces power consumption, silicon area and
access time. This paper analyzes at what extent tag and target address lengths
could be reduced to benefit both dynamic and static power consumption, silicon
area, and access time, while sustaining performance. Experimental results show
that the tag length and the target address could be reduced byabout a half and
one byte, respectively with no performance losses. BTB peakpower savings can
reach about 35% when both reductions are combined together,thus effectively
attacking the hot-spot.

1 Introduction

Traditionally, a key issue to improve microprocessor performance has been the clock
frequency. The higher the clock frequency, the faster the processor is able to execute
instructions. However, such increase in clock frequency yields to an increase in the pro-
cessor power consumption. As the frequency has kept rising,the power consumption
and the corresponding package and cooling costs have becomeprohibitive, constraining
such trend. It has been estimated [1] that heat dissipation above 30-40 watts increases
the total cost of thermal packaging and cooling per chip by more than one dollar per
watt. The costs can be as high as those derived from a 130W heatdissipation [2]. Con-
sequently, power consumption has become nowadays a major microprocessor design
concern. Power consumption can be reduced by either reducing the static power (i.e.,
the power consumed due to transistor leakage currents) or dynamic power (i.e., the
power consumed due to transistor switching).

Focusing on the average power is important when designing power-limited devices
constrained by the power supply such as batteries. However,power is not distributed
uniformly across the chip area but on specific structures. Inother words, the different
microprocessor structures present different power densities [3]. Those structures with
highest density may trigger thermal emergencies when working at peak power, and are
referred to as thermal hot-spots. These points are the main responsible for the costs of



Table 1. Increase of temperature per cycle

Component Area (mm
2) Peak power (W)Temp. increase (°C)

Load/Store Queue 0.5 2.7 0.7e-3
Instruction Window 0.9 10.3 3.1e-3
Register File 0.25 5.5 2.6e-3
Branch Predictor 0.35 5.3 5.2e-3
L1 Data Cache 1.0 11.6 2.6e-3
Integer Units 0.5 4.3 2.5e-3
Floating Point Units 0.5 6.7 2.6e-3

thermal packaging and cooling solutions, since they must bedesigned to operate at peak
power (even if peak power is rarely reached). That means that, to allow high frequencies
while keeping the packaging and cooling costs at a reasonable cost, solutions should
address hot spots.

On the other hand, in current microprocessors, deep pipelines have become predom-
inant in order to allow high clock speeds. In these microarchitectures, the fetch stage
bandwidth must be high enough to efficiently feed the remaining stages. In this context,
fast handling of branch instructions is important because they can stall the fetch stage
until their direction (i.e., taken or not taken) and target address are known, thus drop-
ping the performance. To deal with control hazards, branch prediction techniques have
been extensively studied during the last decade [4–8].

The branch predictor can be accessed multiple times every cycle. Thus, this struc-
ture presents a high power density. Because of this reason, it is one of the scorching
hot-spots in the processor. This fact can be appreciated in Table 1, which shows the
temperature increase per cycle reached by different main processor structures when
working at 1.5Ghz (peak performance). These results are derived from the model de-
tailed in [9] for a processor model similar to the Alpha 21264using a 100°C baseline
temperature. Notice how the branch predictor, despite having one of the smallest areas,
is the main heat contributor in the list.

A major structure of the branch predictor is the branch target buffer (BTB), and
it constitutes an important percentage of its heat. The BTB has been implemented in
modern microprocessors in two different ways. In some processors, the BTB performs
both predictions (target address and direction). However,most current microprocessors
decouple the target address prediction, which is performedby a BTB table, from the
branch direction, which is performed by a branch predictor structure. This decoupled
implementation has been the model addressed in this paper.

Different works have been proposed to reduce power consumption in the BTB. In
this paper, we study at what extent power consumption might be reduced by merely
reducing the tag length, the target address or both. By reducing the power consumption
of the BTB without adding any extra hardware, we reduce the peak consumption of a
major hot-spot of the processor. The benefits of this reduction are twofold. On one hand,
packaging and cooling costs can be decreased, while on the other hand, there are more
opportunities for increasing the processor frequency. However, as a side effect, both
branch direction and target address misprediction rise, which may negatively impact on
performance.



This paper analyzes the effects of reducing the tag and the target address bits of the
BTB on power, energy, area, access time, and performance. Experimental results show
that the tag length and the target address could be reduced byabout a half and one byte,
respectively with no performance losses. When both techniques are applied together
savings can reach about 35%. Notice that, as we propose a hardwired technique, these
benefits consistently apply regardless of whether the BTB isworking or not at peak
power. Thus, the hot-spot is effectively attacked.

The remaining of this paper is organized as follows. Section2 discusses some re-
lated work. Section 3 summarizes the proposed reduction of the BTB tag and target
address length, and its pros and cons. Section 4 analyzes theexperimental results and
finally, some concluding remarks are drawn.

2 Related Work

Important research work has focused on reducing the BTB power consumption. Some
of these works attempt to reduce the power consumption in theBTB by reducing the
number of accesses [10–12], while other approaches apply atthe circuit level [13, 14].

Regarding the first approach, Petrov and Orailoglu [10] propose a mechanism that
uses control flow information (e.g., basic block lengths), obtained at compile time. This
information is stored in a table called the ACBTB (Application Customizable Branch
Target Buffer). Two auxiliar registers are used, one to count the number of instructions
until the next branch, and other to index the table. When the counter reaches zero, the
ACBTB is accessed to read the target address. Then, the counter is updated with a value
according to the stored control information.

Deris and Baniasadi [11] propose the Branchless Cycle Prediction (BLCP) that uses
a structure to predict which cycles the ICache line has no branch (branchless cycles).
Thus, there is no need to access the BTB. To this end, a small Global History Shift
Register (GHR) and a Prediction History Table (PHT) are used. The GHR records the
history of the branch and the branchless cycles. This table indexes the PHT, which
predicts whether a branch instruction will be fetched in thenext cycle. If the prediction
is false, the BTB is not accessed. The technique proposed by Palermoet al. for VLIW
architectures [12] uses a branch detector that partially pre-decodes instructions to find
possible branches, in order to access the branch predictionblock selectively, and thus
to the BTB.

Regarding the second approach, Chaveret al. [13] propose an adaptive resizing of
the BTB. To this end, some portions of the BTB are selectivelydisabled using dynamic
cache resizing techniques.

Hu et al. [14] apply decay strategies which, from time to time, switch-off specific
entries in the BTB, so reducing leakage energy at the expenseof some performance
loss.

Unlike these techniques, this paper neither reduces the number of accesses nor dis-
ables BTB entries. Instead, we analyze how power consumption can be saved by reduc-
ing the number of bits in the BTB, so saving power consumptionfor every performed
access. In this way, we address not only average power savings but also thermal pack-



aging and cooling costs. Nevertheless, notice that the aforementioned techniques are
orthogonal to our approach, so they can be applied all together.

3 Proposed Mechanism

The branch target buffer is implemented like a cache structure that has two main fields:
the tag and the target address. The tag field is compared with the corresponding bits of
the PC of the instruction being fetched. On a hit, if the branch prediction outcome is
taken, the stored target address is written to the PC, otherwise, it is discarded. When the
real target address is calculated later in the pipeline, it is compared with the predicted
one. If the prediction fails, the BTB must be updated with thecorrect target address.

In modern microprocessors, the BTB is accessed at the same time as the instruction
cache. At this point, it is not known whether the instructionbeing read is a branch or
not. A straightforward solution to force that only branchesmay hit the BTB is to store
in the tag field the whole branch address (i.e., its PC). Of course, if some of these bits
are used to index the BTB (i.e., implemented as a set-associative table), there is no need
to store all of them. In addition, as memory is usually byte addressable but instructions
are word aligned, some least significant bits of the instructions address can be discarded
since they are always equal to zero.

Another key issue is to analyze the relationship between thetarget address of a
branch and its PC (i.e., how distant they are). In this sense,if both PCs are close enough,
they will share some of the most significant bits. In such a case, if the target address
field is reduced, the BTB would provide only a fraction of suchaddress, but the final
address could be obtained by using the most significant bits of the PC accessing the
BTB.

The key issue behind the proposal is to reduce the number of stored bits in the BTB
in order to remove static and dynamic power consumed by thesebits. As a side effect,
area and access time are also reduced. The proposal attacks the two main parts of the
BTB (i.e., the tag and the target address).

3.1 Reducing the number of Tag Bits

Reducing the number of tag bits might affect the hit ratio, because phantom branches
and branch aliasing could arise. This section discusses theimpact of reducing the tag
field on these negative effects.

The problem raises because there could be more than one instruction matching the
same tag (of course, only one of them is the correct one), regardless of whether they
are branch instructions or not, therefore resulting in BTB misspeculations. This kind
of misspeculation is named in two different ways depending on whether the instruction
causing it is a branch or not.

A phantom branch is a non-branch instruction that hits the BTB, thus, it is executed
as a normal branch. Consequently, if it is predicted taken, the PC is updated with the
target address read from the BTB and a wrong inflow of instructions is inserted in the
processor pipeline until the misprediction is detected. This is just like a common branch
misspeculation, but in this case, it can be detected much earlier, (i.e., when decoding



the instruction at the decode stage). Thus, it is not necessary to wait for the branch to
be resolved later in the pipeline to recover the machine to a precise state. Notice that
only the fetched and not yet decoded instructions are affected. Thus, the only action
to be done is to squash those instructions, without affecting instructions from the ROB
neither the mapping table.

Branch aliasing refers to different branches that match thesame tag in the BTB. The
problem is that any of these branches might be predicted withthe target address of any
other, what would incur a BTB misprediction. This misprediction is detected when the
target address is calculated later in the pipeline, and would cause branch misspeculation
if the branch is predicted taken. Notice that this case can behandled as a normal branch
misspeculation. Thus, to recover from this misspeculation, there is no need to add extra
logic.

Reducing the tag length, not only reduces the number of memory cells but also the
comparator size (i.e., the number of XOR gates). This fact will positively impact on
both static and dynamic power. In addition, the area, the circuit delay and, the BTB
access time will be also reduced.

3.2 Reducing the number of Target Address Bits

The field storing the target address in the BTB may be reduced by removing either
of its bits. However, as instructions are stored in continuous memory addresses, they
share their most significant bits. Thus, only a subset of the bits might be stored in the
BTB and the effective target address could be computed by concatenating the most
significant bits of the PC of the instruction accessing the BTB with the fraction of
the target address stored in the BTB. In such a case, the problem is that the effective
target address might be wrong, thus introducing BTB mispredictions that would result
in branch misspeculation if the branch was taken. This kind of misspeculation is handled
as a normal branch misspeculation, thus there is no need to add extra logic to detect and
recover from it. On the other hand, the benefits of reducing the target address length are
similar to those of reducing the tag length, since a reduction in the number of memory
cells is applied.

Again, there is a tradeoff between power, area and access time, and performance
loss. Thus, a fair analysis should take into account the advantages and shortcomings of
reducing the tag and target address lengths. The key issue isto look for how many bits
could be removed without hurting the performance.

4 Experimental Results

Experiments were run by using the Multi2Sim simulation framework [15], which was
extended to support different tag and target address lengths, detecting phantom branches
and branch aliasing, and the SPEC2000 benchmark suite [16] as workload. To measure
the energy, area and cycle time of the BTB, the CACTI 4.0 tool [17], a widely used
cache timing and power model, has been used.

Experimental results have assumed a 32-bit address microprocessor configuration
as shown in Table 2, with a baseline 4-way 512-set BTB implemented using 65 nm
silicon process.



Table 2. Machine Parameters.

Microprocessor core
Branch predictor Hybrid gShare/bimodal
gShare 4KB 2-bit counters
Bimodal 4KB 2-bit counters
Choice Predictor 4KB 2-bit counters
BTB 512 sets, 4 ways, 13 cycles misprediction,

3 cycles phantom branch penalty
Decode/Issue/Retire bandwidth4 instructions/cycle
# of Int ALU’s, mult/div 4,1
# of FP ALU’s, mult/div 2,1

Memory Hierarchy
L1 data cache 64KB, 2 way, 64 byte-line
L1 data cache hit latency 1 cycles
L2 data cache 512KB, 4 ways, 64byte-line
L2 data cache hit latency 10 cycles
Memory access latency 200 cycles
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Fig. 1. IPC losses when reducing the tag length

4.1 Reducing Tag Bits

First, the effect of reducing the tag length has been evaluated alone (i.e., without re-
ducing the target address length). Note that the length of the tag stored in the BTB,
without applying any reduction in baseline processor, mustbe 21 bits1. Thus, the anal-
ysis starts assuming a 21-bit tag BTB, and this length is progressively reduced on 1-bit
steps, down to zero bits.

Impact on Performance. As far as the tag length is reduced, performance (i.e., IPC)
drops as phantom branches and branch aliasing rise. Figure 1(a) shows how phantom
branches and branch aliasing impact on the IPC. As observed,if we use less than 9-10
bits, there is a strong impact on performance, but using justa 10-bit tag (about three
times smaller) the performance loss is almost negligible. Figure 1(b) shows the IPC
losses due only to branch aliasing (by using branch predecoding). In this case, the tag
could be reduced to 6-7 bits without negatively impacting performance. Therefore, the
highest fraction of performance losses comes from phantom branches.

Impact on Energy, Area and Access Time. Reducing the tag length also brings
hardware benefits, since it reduces the energy consumption,the silicon area and the ac-
cess time of the BTB. These benefits have been measured ranging the tag size from 21

1 21 = 32 – 2 (4-byte words) – 9 (512 sets)
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Fig. 2. Energy Savings when Reducing the Tag Length
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down to 2 bits. Power savings have been calculated taking into account the whole exe-
cution time. For the dynamic power, first CACTI has been used to measure the energy of
a single access to the BTB with every tag length. Then, this energy has been multiplied
by the number of accesses during the execution time. For the static power, the transistor
has been taken as consumption unit and the static energy has been calculated for every
tag length. Then, this energy has been multiplied by the number of execution cycles.
Notice that under performance loss conditions (higher execution time), this analysis is
optimistic because the extra energy consumed by processor structures other than the
BTB had not been accounted. Nevertheless, in the absence of performance losses (e.g.,
a 10-bit tag length) this analysis remains valid.

Figure 2(a) and Figure 2(b) show the dynamic and static powerconsumption re-
spectively. As expected, as the tag length is reduced, the BTB power is also decreased.
However, notice that, for some applications, a very low tag length gives no further im-
provements due to increased accesses to the BTB in case of mispredictions. A 9-bit tag
length BTB, which has been shown to have no impact on the processor performance,
has about 20% less dynamic power consumption and about 20 % less static power con-
sumption.
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Fig. 5. Combined IPC Losses

Finally, Figure 3 and Figure 4 show the results for area and access time. Both of
them are reduced as the number of tag bits decrease. Again, a 9-bit tag length gives a
good tradeoff, requiring about 20% less silicon area and reducing the access time about
6%.

4.2 Reducing Target Address Bits

This analysis assumes an initial 32-bit target address length, which is progressively
reduced down to zero bits while keeping fixed the baseline target address length. Due
to space restrictions, results are not plotted but they are discussed.

Impact on Performance. As the target address length is reduced, performance
drops due to BTB address mispredictions that, in case of branch predicted as taken,
results in a branch misspeculation. Results show that IPC losses rise as the target ad-
dress length is reduced down to 21 bits for all applications other than applu and bzip2.
The explanation is that, in these cases, some BTB mispredictions are hidden due to
branches predicted as not taken, thus no branch mispeculation appears. Consequently,
there is no negative impact on the IPC.

Impact on Energy, Area and Access Time. Regarding power savings, results show
that a good tradeoff value could be a 24-bit target address field, which achieves across
the different applications by about 15% and 20% of dynamic and static power savings,
respectively. More aggressive target address reduction dramatically impact on perfor-
mance, and as a consequence, increase the energy budget. Concerning silicon area and
access time improvements, results show that a 24-bit targetaddress length achieves
about 7% area reduction, decreasing the access time by about6%.

4.3 Combining Tag and Target Address Reduction

This section explores the impact of reducing simultaneously the number of bits in the
tag and the target address fields. To this end, we assume a fixed10-bit tag since, as
shown above, it is the smallest size with no performance losses. Figures 5, 6, 7, 8, and
9 plot the results. As expected, when combining both reductions, IPC losses begin to



 45

 50

 55

 60

 65

 70

 75

 80

 85

1617181920212223242526272829303132

S
ta

tic
 E

ne
rg

y 
R

ed
uc

tio
n 

(%
)

Data Length (Bits)

applu
equake
ammp

gcc
bzip2

eon

average

Fig. 6. Combined Static Energy Reduction
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Fig. 7. Combined Dynamic Energy Reduction
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arise for target address lengths shorter than 24 bits. Thus,at this point is when we reach
the major benefits without hurting performance, achieving savings of 32%, 35%, 26%,
and 12% in dynamic energy, static energy, area, and access time, respectively.

5 Conclusions

The BTB is a key structure of the branch prediction unit, which is aggressively accessed
every cycle, and acts as a major hot-spot in current microprocessors. This work has an-
alyzed how both BTB dynamic and static power consumption canbe saved by reducing
the tag length, the target address length or both. Consequently, silicon area and access
time are also reduced. Side effects, such as possible adverse impacts on performance or
extra energy due to performance dropping, have been also analyzed.

Results show that a 10-bit tag has no adverse impact on performance while pro-
viding important benefits (e.g., by about 17% of power savings). These results can be
improved if target address is simultaneously reduced. For instance, using a 10-bit tag
length with a 24-bit target address length, power savings grow up 35% with no perfor-
mance losses.
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