
An Efficient and Deadlock-Free Network
Reconfiguration Protocol

Olav Lysne, Member, IEEE, José Miguel Montañana, José Flich, Member, IEEE Computer Society,

José Duato, Member, IEEE, Timothy Mark Pinkston, Senior Member, IEEE, and Tor Skeie

Abstract—Component failures and planned component replacements cause changes in the topology and routing paths supplied by

the interconnection network of a parallel processor system over time. Such changes may require the network to be reconfigured such

that the existing routing function is replaced by one that enables packets to reach their intended destinations amid the changes.

Efficient reconfiguration methods are desired which allow the network to function uninterruptedly over the course of the reconfiguration

process while remaining free from deadlocking behavior. In this paper, we propose, evaluate, and prove the deadlock freedom of a

new network reconfiguration protocol that overlaps various phases of “static” reconfiguration processes traditionally used in

commercial and research systems to provide performance efficiency on par with that of recently proposed “dynamic” reconfiguration

processes but without their complexity. Simulation results show that the proposed Overlapping Static Reconfiguration protocol can

reduce reconfiguration time by up to 50 percent, reduce packet latency by several orders of magnitude, reduce packet dropping by an

order of magnitude, and provide unhalted packet injection as compared to traditional static reconfiguration while allowing network

throughput similar to dynamic reconfiguration.

Index Terms—Interconnection network, network reconfiguration protocol, deadlock freedom, routing algorithm, reliability and fault

tolerance.

Ç

1 INTRODUCTION

AS the number of components in a system increases,
maintaining the desired system dependability and

availability requirements becomes increasingly challenging.
Interconnection networks serve as the communication
infrastructure of parallel processing systems, enabling the
various processing, memory, storage, and I/O components
of the system to communicate. They are found in high-end
servers [1], [2], [3], [4] in the form of system area networks
[5], [6], [7], [8], [9], [10], [11] as well as in multicore
processors [12], [13], [14], [15] as networks-on-chip (NoCs)
[16], [17], [18] at the other end of the spectrum. The network
plays a critical role in determining system performance and
dependability as the interaction and cooperation of other
system components ultimately depend on its ability to
establish communication paths between those components.

Many techniques have been developed over the years to
improve interconnection networks [19], [20], [21], [22], [23],
[24]. A central problem that must be addressed in the
design of a network is how deadlock can be handled.
Deadlock in an interconnection network is the anomalous

situation in which packets transported within the network
hold onto a set of fully occupied resources in a cyclically
knotted manner while waiting endlessly for some resource
within that set to become available [25]. Unless somehow
avoided or resolved quickly after beginning to form,
deadlock can cause the entire system to fail as none of the
packets in the set can move first, thus eventually stalling
forward progress of other (possibly all) packets in the
network. Network deadlock is generally avoided through
careful design of the routing algorithm, i.e., the routing
function. In some cases, however, the premises upon which
the design is based may break. This can happen in
unexpected and unplanned ways when network switches
or links suddenly fail; alternatively, this can occur in a
controlled and planned way by the user/system operator to
replace or service switches and links. A change in network
configuration often requires a replacement of the deadlock-
free routing function with another one that takes the
changes into account. The routing function that prevails
during the reconfiguration process in transitioning from the
old to the new should maintain the deadlock-free properties
of the individual routing functions, i.e., it should also be
deadlock-free. This is trivially done when the change
consists only of adding new network resources. When
removing network resources (i.e., due to failure) or
changing the routing paths over existing resources, the
process is less trivially defined.

Deadlock-free network reconfiguration schemes devel-
oped thus far to confront this problem are based on two
approaches. In static reconfiguration (SR) [1], [26], [27], no
packets routed according to the new routing function are
allowed to be injected into the network while there still are
packets in the network routed according to the old routing
function. In dynamic reconfiguration [28], [29], [30], [31], [32],
[33], [34], [35], both can coexist in the network, with packets

762 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

. O. Lysne and T. Skeie are with the Department of Informatics, University
of Oslo, and the Simula Research Laboratory, PO Box 134, NO-1325
Lysaker, Norway. E-mail: {olav.lysne, tskeie}@simula.no.

. J. Flich, J.M. Montañana, and J. Duato are with the Departamento DISCA,
Universidad Politécnica de Valencia, Camino de Vera, s/n, 46020 Valencia,
Spain. E-mail: jflich@disca.upv.es, {jmontana, jduato}@gap.upv.es.

. T.M. Pinkston is with the Ming Hsieh Department of Electrical
Engineering, University of Southern California, 3740 McClintock Ave.,
EEB-208, Los Angeles, CA 90089-2562. E-mail: tpink@usc.edu.

Manuscript received 20 Mar. 2007; revised 11 Oct. 2007; accepted 12 Dec.
2007; published online 12 Feb. 2008.
Recommended for acceptance by Y. Yang.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-03-0097.
Digital Object Identifier no. 10.1109/TC.2008.31.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

being routed according to the new routing function,
possibly arriving at destinations before packets routed
according to the old routing function. Because of its
serialization in executing reconfiguration phases, SR leads
to high packet latencies, high packet dropping rates in case
of link/switch failures, and low throughput, which may be
unacceptable for many applications targeted for computa-
tional data centers, highly available Web servers, video
servers, and process control servers. Dynamic reconfigura-
tion can lead to fewer packets that miss their quality-of-
service (QoS) deadline, a dramatically reduced number of
dropped packets, and no network downtime. Some pro-
posed techniques, however, are applicable only to a limited
set of routing functions [29], rely on dropping packets to
avoid deadlocks [30], appear to be more complex than the
straightforward static approach [33], or have requirements
on the minimal set of hardware resources implemented
[31]. The Double Scheme (DS) [31], for example, is simple
and general, i.e., applicable to any network topology and
routing function, and it does not rely on dropping packets
to avoid reconfiguration-induced deadlocks, but it requires
the network to implement two sets of data virtual channels.

In this paper, we present a very simple method for
reconfiguring a network efficiently in a deadlock-free
manner in the event of faults or other circumstances
requiring routing paths to change over existing resources.
The proposed new network reconfiguration protocol is
generally applicable to any network topology and routing
function and it does not require multiple sets of data virtual
channels or packet dropping to maintain deadlock free-
dom.1 In addition, it guarantees in-order delivery of packets
during reconfiguration when the old and new routing
functions are deterministic and, for that reason, can offload
much of the fault-handling burden from higher level
network protocols. Simulation results reveal that the
proposed network reconfiguration protocol can reduce the
reconfiguration time by up to 50 percent, reduce the packet
latency by several orders of magnitude, reduce packet
dropping by up to nearly an order of magnitude, and
provide unhalted packet injection as compared to tradi-
tional SR while allowing network throughput similar to the
DS dynamic reconfiguration.

2 IDEA DESCRIPTION

Network reconfiguration is invoked after the need for it is
detected and notified across the network, as described in
[1], [29], [31]. Static network reconfiguration is traditionally
based on the notion of global barrier synchronization [1],
[26], [27]. It consists of three phases separated essentially by
two global synchronization operations, as described below:

Phase 1: Halt packet injection globally at all network source end
nodes to allow the network to drain itself of all previously
injected packets. Simultaneous to this, the new routing
function can be calculated and distributed globally
across the network but cannot yet be activated. Note
that the start of network drainage could have occurred
asynchronously at any time prior to this, but full network
drainage completes globally by the end of this phase.

Barrier synchronization 1: Packets must be completely drained
from the network globally across the entire network. As some
links and end nodes could be drained far in advance of
others, this barrier imposes an unnecessary constraint
that can cause significant inefficiencies in the reconfi-
guration process.

Phase 2: Activate the new routing function globally across all
input ports of all switches. Note that uploading of the new
routing function could have occurred asynchronously at
any time prior to this (either in Phase 1 or at the
beginning of Phase 2), but its activation occurs anytime
after the start of this phase and completes globally by the
end of this phase.

Barrier synchronization 2: The new routing function must be
activated globally across the entire network. Again, as some
switches and end nodes could be activated far in
advance of others, this barrier imposes an unnecessary
constraint that can cause significant inefficiencies in the
reconfiguration process.

Phase 3: Packet injection at the network end nodes is allowed to
resume. Note that the resumption of packet injection may
occur asynchronously across the network at any time
after the start of this phase and it completes globally
across the network by the end of this phase.

Synchronizing globally across the network prevents
overlap between any part of the different reconfiguration
phases by any of the switches and end nodes throughout
the network. Although this can be inefficient (and, thus, is
the target of our optimizations), it at least ensures two
important invariants:

Invariant 1: Packets use either only the new routing function
(these are referred to as new packets) or only the old routing
function (these are referred to as old packets). This property
ensures in-order delivery of packets when the routing
functions are deterministic as no new packet can over-
take any old packet.

Invariant 2: There are no cyclic-wait dependencies between
packets due to reconfiguration. This property ensures that
the network cannot deadlock on account of the reconfi-
guration process itself.

While these invariants are very useful properties for any
reconfiguration process, we propose a much more efficient
way in which we provide them without the need for global
synchronization. The basic idea is to synchronize between
processes locally, only when needed, by using reconfigura-
tion tokens in order to allow operations within different
phases to be overlapped in time across the network. An
informal description of how this can be done is given in the
following and serves as the basis for our proposed Over-
lapping Static Reconfiguration (OSR) protocol.

We can begin to understand how the phases of traditional
static network reconfiguration can be overlapped by first
analyzing the transition between Phases 1 and 2, both locally
and globally, across the network. In order to maintain
Invariant 1 while overlapping the two phases, input ports
of network switches must not activate the new routing
function if old packets can still be received at those ports. If
this is upheld, Invariant 2 will be trivially fulfilled as long as
synchronization between Phases 2 and 3 remains intact (we
deal with this in what follows). Thus, Phases 1 and 2 can be
overlapped by allowing each input channel in each switch to

LYSNE ET AL.: AN EFFICIENT AND DEADLOCK-FREE NETWORK RECONFIGURATION PROTOCOL 763

1. Any dropped packets arising from this protocol are due to truncation
or arriving at a disconnected link or switch arising from a fault.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

activate the new routing function locally only after it has
forwarded its last old packet, even if this and all other packets
have not yet reached their destinations globally across the
network. This way, Phase 2 will start locally on each switch
input port immediately after the port has finished Phase 1.
The mechanism that we propose for implementing this is
based on reconfiguration tokens.

Reconfiguration tokens serve as local synchronizers
between reconfiguration phases. Each source node injects a
reconfiguration token into the network after its last desig-
nated old packet has been injected. The token is associated
and propagates with the last old packet (or with no packet if
none needs to be injected). When an input port of any switch
receives and processes a token, it is designated as having
locally completed Phase 1 of the reconfiguration process.
Alternatively, if an input port is connected to a link or
neighboring switch that has been detected as being faulty, it
likewise is designated as having completed Phase 1 and
locally generates a token. Local synchronization occurs by
multicasting the token to all output ports to which the input port
could transmit packets according to the old routing function. This
notifies output ports that this channel is now completely
drained of all old packets. The input port is then allowed to
proceed locally to Phase 2, switching from the old routing
function to the new one simply by activating the new routing
function for the channel.

In transitioning from Phases 1 to 2 globally throughout
the network, each output port in each switch also
synchronizes locally, transmitting a token to the next
neighboring switch immediately after all tokens have been
received and processed from all input ports from which the
output port can receive packets according to the old routing
function. This way, tokens propagate within switches and
between switches throughout the network in the order of
the channel dependency graph2 of the old routing function.
If this channel dependency graph is acyclic, each input port
of each switch will receive a token exactly once. Phase 2
completes globally once all reconfiguration tokens have
been processed at all input and output ports of all switches
and end nodes. This signifies that old packets no longer
exist in the network.

We now turn our attention to the transition between
Phases 2 and 3 locally and globally across the network. In
order to maintain Invariant 1 while overlapping the two
phases, all input ports of network switches encountered by
new packets must activate the new routing function first
before routing those packets.3 Thus, Phases 2 and 3 can be
overlapped by resuming the injection of packets into switch
input ports from source nodes and output ports of
neighboring switches only after those input ports have
activated the new routing function locally, even if the new
routing function is not yet activated at all switch input ports
globally across the network. This way, Phase 3 can start
locally on each switch input port immediately after the
switch input port has finished Phase 2. Again, our proposed

reconfiguration token mechanism can be used for imple-
menting this as well.

Each source node can resume injecting packets (i.e., new
packets) locally into the network (i.e., into the input ports of
attached switches) immediately after having transmitted a
reconfiguration token associated with the last designated
old packet, if any. Likewise, each switch output port can
resume transporting packets (i.e., new packets) to the input
port of its neighboring switch immediately after having
transmitted a reconfiguration token to that channel. Local
synchronization occurs by not allowing any new packets to be
forwarded from any input port to a target output port within
switches before a token has been transmitted from that output
port. Those new packets will remain buffered, as normal, at
the input ports. Output ports of switches are blocked from
accepting new packets, even from input ports that have
already processed their token, until the new routing
function is activated locally at the switch for all input ports
from which the output port was able to receive old packets.

The transition from Phases 2 to 3 globally throughout the
network occurs similarly to the transition from Phases 1 to 2:
The activation of the new routing function for each input port
in each switch synchronizes locally with the output port of the
neighboring switch or source node via the transmission of a
reconfiguration token. This occurs throughout the network in
the order of the channel dependency graph of the old routing
function until all input ports receive a token. This way,
channels will transmit, in channel dependency order, first
only old packets (if any), then a reconfiguration token, and,
finally, only new packets (if any). Similarly to Phase 2, Phase 3
completes globally once all reconfiguration tokens have been
processed at all input and output ports of all network
switches and end nodes.

One remaining issue is whether localizing the synchro-
nization between Phases 2 and 3 violates Invariant 2
globally across the network. As the following reasoning
shows, it does not. Any cyclic-wait dependencies will have
to contain both old and new packets; otherwise, either the
old or the new routing function would be prone to
deadlocking by themselves, which is assumed to not occur
(i.e., both are independently deadlock-free by design).
Hence, for there to be cyclic-wait dependencies containing
both old and new packets, there would have to be an old
packet waiting behind a new one and vice versa. This
would, in turn, mean that an old packet would have to enter
into a channel that has already accepted a new packet. But
then, this old packet would have arrived on the channel
after a reconfiguration token, which is contradictory to what
is described above to maintain Invariant 1. Thus, Invariant 2
is also maintained.

An illustration of how this works is given in Fig. 1, where
we have depicted a 2� 2 mesh network at various stages of
the reconfiguration process. At time T1, the routing
algorithm is first vertical and is then horizontal, giving
dependencies from vertical channels to horizontal channels,
as the arrows indicate. The reconfiguration process ends at
time Tn, where the routing is first horizontal and then is
vertical. It is clear that, if the dependencies at time T1 and
those at time Tn coexisted at any point in time, we would
have a cycle of dependencies and, thus, danger of deadlock.
At time T1, the old routing function is intact. Assume now
that reconfiguration starts and that switch 1 receives the
reconfiguration token on its vertical link. This means that it

764 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

2. The term channel dependency graph is defined in Section 3.2. If the
channel dependency graph contains cycles (i.e., due to an adaptive routing
function), a preprocessing stage could be used to remove some adaptive
routing choices, resulting in a restricted (but still connected) routing
function with an acyclic channel dependency graph through which tokens
propagate. Previous results on deadlock-free routing imply this is always
possible for any deadlock-free adaptive routing function [22], [23], [37].

3. The domain of the routing function is defined on input channels and
not on switches, as described in Section 3.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

can no longer receive old packets on this link. Since no new

packet will make a vertical-to-horizontal turn, the depen-

dency between the links connected to switch 1 disappears at

time T2. Now, switch 1 can start sending new packets on its

horizontal link; thus, switch 2 may receive packets that need

to do a horizontal-to-vertical turn. This gives rise to a new

dependency between the links of switch 2 at time T3. The

important observation is that the introduction of the new

dependency around switch 2 can only happen after the

dependency around switch 1 has been removed. This way,

our reconfiguration method, in a very simple way,

guarantees that old dependencies are removed and new

ones are introduced in a controlled order, without ever

having a cycle of coexisting dependencies.
Finally, the protocol described in this paper assumes that

one network reconfiguration occurs at a time. Although this

is a relatively natural and practical assumption, it can easily

be relaxed without significantly changing the base protocol.

The main requirement is that the sequence of routing

functions active on each input channel must be the same for

all input channels on all switches, which means that there is

a global sequence of routing functions that all components

agree upon. Thus, the base protocol can be extended in an

obvious way: No packet that is routed according to a

routing function will have to wait behind a packet that is

routed according to a routing function that occurs later in

the sequence. Tokens must also carry information on which

reconfiguration they belong to, i.e., between which pair of

routing functions a token demarks in the transition.
We wrap up this informal description with some

additional remarks on the motivation for overlapping the

phases of traditional static reconfiguration. We stated

previously that there are two generic reasons for optimizing

operations this way: either to shorten the time from the start

to the end of the operation or to keep components from

lingering in nonoptimal states. In the case of network

reconfiguration, reconfiguration time is less important than

network components lingering in nonoptimal states due to

packets being prevented from being injected and routed in

the network. The overall execution time of applications

running on the system is impacted more by the latter than

the former [1], [27]. Thus, the main benefit of the OSR

protocol is its dramatic reduction in the period of time in

which the network is prevented from injecting and

forwarding packets as compared to traditional non-OSR

schemes. The simulation results presented in Section 4

quantitatively confirm this to be the case.

3 DETAILED PROTOCOL DESCRIPTION AND PROOF

OF DEADLOCK FREEDOM

A detailed description of our proposed Overlapping Static
Reconfiguration protocol and a comprehensive formal
proof of its deadlock-free properties are presented in
Sections 3.1 and 3.2.

3.1 Overlapping Static Reconfiguration

The following definitions and notation are used in describ-
ing the proposed network reconfiguration protocol.

Definition 1. An interconnection network or, simply, a
network, I, is represented by a strongly connected directed
graph, I ¼ GðN;CÞ. The vertices of I are the set of switches
and end nodes N , whereas the edges of I are the set of
communication channels (possibly virtual), C. Channels are
unidirectional: Channel ci interconnects the two nodes srcðciÞ
and dstðciÞ 2 N , i.e., the source and destination of the
channel, respectively. A link is comprised of a set of channels
c1; c2; . . . ; cn such that, for all i and j, either srcðciÞ ¼ srcðcjÞ
a n d dstðciÞ ¼ dstðcjÞ o r srcðciÞ ¼ dstðcjÞ a n d
dstðciÞ ¼ srcðcjÞ. This means that a bidirectional link will
consist of at least one channel in each direction. All channels in
C are assumed to be part of exactly one link.

In each network, a subset of the nodes are end nodes,
which generate and consume network traffic (packets); all
other nodes in the network are switches, which connect to
other switches or end nodes. End nodes have one or more
ingress and egress links to/from network switches and the
channels of these links are called injection and ejection
channels, respectively, depending on whether they inject
packets into the network or eject packets out of it. Links
connect a switch to other switches and end nodes through
switch input ports and output ports.

Definition 2. Assume a network, I ¼ GðN;CÞ. A routing
function R : C �N�!PðCÞ, where PðCÞ is the power set of
C, takes a channel c and a destination node d as parameters
and returns a set of next-hop channels that can be chosen from
channel c for packets whose destination is d. A routing
function R is deterministic if, for all ðc; dÞ combinations,
Rðc; dÞ is singleton; otherwise, it is adaptive.

This definition of a routing function allows a node to
select different output channels, depending on into which
input channel a packet arrives. In the following description,
the old routing function that is active before network
reconfiguration is referred to as Rold and the new routing
function to which the network is to be reconfigured is
referred to as Rnew. The term old channel is used to signify a
channel that has not yet processed a reconfiguration token

LYSNE ET AL.: AN EFFICIENT AND DEADLOCK-FREE NETWORK RECONFIGURATION PROTOCOL 765

Fig. 1. The development in channel dependencies as Overlapping Static Reconfiguration proceeds.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

and, for this reason, still uses Rold. Similarly, new channels
are those that have processed the token and, hence, have
started to use Rnew.

The proposed OSR protocol is described in Fig. 2 and
Fig. 3 illustrates the dynamics of the proposed protocol. The
state of a switch at three different points in time during
reconfiguration is shown. Each part (Figs. 3a, 3b, and 3c)
shows a switch with four input ports and four output ports,
where each port serves one channel. The ports are depicted
with a smaller standing rectangle within the switch and
input and output ports are shown separately for clarity.
Lightly shaded input ports are those that have received a
token but the associated packet has not yet reached the head
of the queue, whereas darkly shaded ones are those that

have processed the token. Likewise, darkly shaded output
ports are those that have transmitted a token. The output
port number to which an input port is allowed to transmit
packets for all possible destinations according to the
currently active routing function is shown to the right of
each input port. For ports that have processed a token, this
will be the new routing function. For ports that have not yet
processed a token, this will be the old routing function. The
arrows from input to output ports indicate to where packets
might be forwarded at this stage of the reconfiguration
process. Input ports that have already processed the token
and activated the new routing function are allowed to
forward packets only to output ports that have already
transmitted a token. Conversely, input ports that have not

766 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

Fig. 2. Proposed Overlapping Static Reconfiguration protocol implemented at each network end node and switch.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

yet processed a token may forward packets only to output
ports that have not yet transmitted a token.

In Fig. 3a, a token has been processed on input ports 1
and 3 and tokens have been transmitted through output
ports 1 and 4. Even if input port 1 is ready to forward
packets to output port 2 and input port 3 is ready to
forward packets to output port 3 according to the new
routing function, they are not allowed to do so as those
output ports have not yet transmitted tokens themselves
and can still receive more old packets from other input
ports. Fig. 3b illustrates a token having arrived on input
port 2 for the last old packet but that packet not yet arriving
at the head of the queue. Fig. 3c illustrates what must have
happened in the switch as a consequence of routing the last
old packet and processing the token at input port 2. Output
port 3 has transmitted a token as all input ports that were
able to forward old packets to it have already processed a
token. Input port 3 is no longer disabled from forwarding
packets to output port 3 now that output port 3 has
transmitted a token. However, input port 1 remains

disabled from forwarding packets to output port 2 as that
output port may still receive old packets from input port 4.
Finally, input port 2 has activated the new routing function
for its packets. This is illustrated in the figure by the change
in output ports supplied by the routing function shown to
the right of the input port.

3.2 Proof of Deadlock Freedom of OSR

The formal proof of correctness of the OSR is based on
theory developed in [32], which, unlike previous theories
(e.g., [20], [22], [23], [37]), encompasses the deadlock
freedom of networks that undergo reconfiguration. That
theory is based on describing network states as sets of CND-
tuples,4 where each tuple describes the occupancy of a
network channel and possible dependency to some other
channel for a packet destined for a particular end node [32].
For routing function R, Rðc; dÞ is the set of channels that a
packet header residing in channel c can take for a
destination given by d. With this, CND-tuple hc; c0; di
signifies that channel c is occupied by part of a packet
destined for end node d, whose header was routed to
channel c0. A CND-tuple hc; c0; di is legal for R only if
c0 2 Rðc; dÞ. Alternatively, CND-tuple hc; c; di signifies that
channel c is occupied by part of a packet destined for end
node d whose header has not yet been forwarded further to
another channel.

According to [32], the runtime state during reconfigura-
tion is represented as a CND-relation, which is a set of CND-
tuples. The set of all possible runtime states at a given stage
of a reconfiguration process is represented by a superset of
CND-tuples. That set is legal if it is the union of all of the
CND-relations that represent all legal runtime states at a
given point in the reconfiguration process. If � is a set of
legal CND-tuples that represents a set of legal runtime
states, any one of these given runtime states is represented
by a CND-relation formed from a consistent subset of �.

Before developing the deadlock freedom proof for OSR,
we give some additional definitions and the main results
from [32], upon which the proof is based. To support
readability of the proof, we have simplified the theorem
into a less powerful one. The original theorem supports
adaptive routing functions with cyclic dependency graphs,
where deadlock freedom is ensured by the existence of a set
of cycle-free escape resources. Since our reconfiguration
protocol requires cycle-free channel dependency graphs, we
do not need to distinguish the escape resources from the
rest of the resources. Our reformulations of the theorem and
associated corollary from [32] are thus based on the
assumption that all channels are escape channels. The
interested reader is referred to [32] for further explanation.

Definition 3. For a network I and routing function R, there
exists a dependency from channel c to c0 if and only if c0 ¼
Rðc; dÞ for some destination d. That is, packets destined for d
may use c0 immediately after c.

Definition 4. For any prevailing routing function R and set of
CND-tuples �, there is a channel dependency from
channels c to c00 if there exists a channel c0 and a destination
d such that c0 ¼ HeaderðcÞ in some consistent subset � of �

LYSNE ET AL.: AN EFFICIENT AND DEADLOCK-FREE NETWORK RECONFIGURATION PROTOCOL 767

Fig. 3. Illustration of the dynamics of the OSR protocol over time within

one switch.

4. Several CND-tuples are needed to represent a blocked wormhole
packet that spans multiple channels, whereas a single tuple is needed to
represent a blocked virtual cut-through packet, given that channels are able
to store entire packets.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

and c00 2 Rðc0; dÞ, where HeaderðcÞ refers to the channel
containing the header of the packet that occupies channel c. Let
DEP ðR;�Þ be the set of channel dependencies corresponding
to routing function R and a set of legal CND-tuples �. That
is, DEP ðR;�Þ ¼ f< c; c00 > j there exists a channel c0 and
destination d for which c0 ¼ HeaderðcÞ for some consistent
subset � of � and c00 2 Rðc0; dÞg.

Definition 5. The channel dependency graph of a network I
with respect to a routing function R is a directed graph, where
the channels of I constitute the vertices, and the dependencies
constitute the arcs.

In developing the proof, we use the following notation to
simplify our description of network state at any point
during reconfiguration. The set of legal CND-tuples for
routing function Rold is given by �old, i.e., �old is the union
of all of the sets of CND-tuples that describe legal runtime
states of the network according to Rold. Likewise, the set of
legal CND-tuples for routing function Rnew is given by �new.
A CND-relation that represents a deadlocked packet
configuration is called a deadlock CND-relation.

The following theorem and corollary are developed and
proven in [32].

Theorem 1. For any legal set of CND-tuples � and prevailing
routing function R, any consistent CND-relation � � � is not
a deadlock CND-relation under R if DEP ðR;�Þ is acyclic.

Corollary 1.1. For any stage of reconfiguration process RP with
a corresponding prevailing routing function R and a set of
legal CND-tuples �, there is no deadlocked runtime state at
that stage of reconfiguration if DEP ðR;�Þ is acyclic.

With the above understanding given by the theory in [32],
we are now able to develop our deadlock freedom proof for
OSR. We start by stating a working assumption and then
proceed by presenting two simple lemmas on the dynamics of
our proposed reconfiguration protocol. Based on those two
lemmas, we develop two other lemmas that describe dead-
lock-free properties for the sequence of states that the
proposed reconfiguration process undergoes. The last of
these lemmas, i.e., Lemma 4, together with Corollary 1.1
proves deadlock freedom of the OSR protocol.

Assumption 1. Both Rold and Rnew independently are assumed
to have acyclic channel dependency graphs by design. That is,
DEP ðRold;�oldÞ and DEP ðRnew;�newÞ are free of cycles.

Lemma 1. OSR ensures that all packets are routed either solely
according to Rold or solely according to Rnew. That is,
Invariant 1 is maintained.

Proof. We prove by contradiction. Consider a packet that
experiences routing according to both routing functions.
On its path from the source to the destination, there will
be two consecutive switches, S1 and S2, where this
packet is routed according to the two routing functions.
There are two possible cases:

Case 1: The packet is first routed according to Rold in S1

and then routed according to Rnew in S2. This packet must
arrive at switch S2 on an input channel that has already
processed a token. In S1, it was routed according to Rold,
so it arrived there on an input channel before a token was
processed on that channel. Therefore, if S2 received a
token before the packet, S1 must have sent a token from

the output channel going to S2 before S1 had processed a
token on one of the input channels from which this
output channel could receive traffic according to Rold.
According to the procedure for output channels in the
reconfiguration protocol, this cannot happen.

Case 2: The packet is first routed according to Rnew in S1

and then routed according to Rold in S2. This packet must
arrive at S2 on an input channel that has not yet
processed a token. In S1, it was routed according to
Rnew, so it arrived there after a token was processed.
Therefore, S1 must have forwarded packets from an
input channel that had processed a token to an output
channel that had not yet transmitted a token. According
to the procedure for output channels in the reconfigura-
tion protocol, this cannot happen. tu

Lemma 2. The order in which packets and tokens are processed by
channels for the OSR protocol is the following: first only old
packets (if any), then a reconfiguration token, and, finally, only
new packets (if any).

Proof. Again, we prove by contradiction. Assume a channel
in a network reconfigured according to the proposed
protocol for which Lemma 2 does not hold. This would
require either a new packet to traverse the channel before
a reconfiguration token is processed or an old packet to
traverse the channel after a token is processed. This
results in the new packet being routed according to Rold

or the old packet being routed according to Rnew at the
next switch. Both cases contradict Lemma 1. tu

Lemma 3. Let �T be the set of legal CND-tuples at some point in
time T in the OSR protocol and let RT be the prevailing
routing function at that time. Then, all dependencies in
DEP ðRT ;�T Þ that start from an old channel are also in
DEP ðRold;�oldÞ and all dependencies in DEP ðRT ;�T Þ that
start from a new channel are also in DEP ðRnew;�newÞ.

Proof. We prove by induction. First consider the channel
dependencies caused by packets routed according to the
old routing function. Assume any channel dependency
from c to c00 in DEP ðRT ;�T Þ, where c is an old channel.
This would require a CND-tuple hc0; c0; di 2 �T such that
c0 ¼ HeaderðcÞ and RT ðd; c0Þ ¼ c00. Since c is an old
channel, we know that the packet with header in c0

was routed according to Rold when it was in c; thus, it is
an old packet. According to Lemma 1, we know that it
must be routed according to Rold all the way up to
channel c0 and also at channel c0. Thus, the prevailing
routing function for channel c0 is Rold. But, this means
that c00 2 RT ðc0; dÞ ¼ Roldðc0; dÞ; thus, the dependency
from c to c00 must be in DEP ðRold;�oldÞ as well.

The proof for channel dependencies caused by packets
routed according to the new routing function is similar.
Assume any dependency from c to c00 in DEP ðRT ;�T Þ,
where c is a new channel. This would require a CND-tuple
hc0; c0; di 2 �T such that c0 ¼ HeaderðcÞ and RT ðd; c0Þ ¼ c00.
Since c is a new channel, we know that the packet with
header in c0 was routed according toRnew when it was in c;
thus, it is a new packet. According to Lemma 1, we know
that it must be routed according to Rnew all the way up to
and including channel c0; thus, the prevailing routing
function for channel c0 is Rnew. But, this means that
c00 2 RT ðc0; dÞ ¼ Rnewðc0; dÞ; thus, the dependency from c to
c00 must be in DEP ðRnew;�newÞ as well. tu

768 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

A simple observation from Lemma 3 is that any
dependencies in DEP ðRT ;�T Þ are in DEP ðRold;�oldÞ, in
DEP ðRnew;�newÞ, or in both.

Lemma 4. DEP ðRT ;�T Þ is acyclic at any point in time T ,
where RT is the prevailing routing function at that time for a
network undergoing OSR.

Proof. We again prove by contradiction. Assume that
DEP ðRT ;�T Þ contains a cycle. We begin by trivially
showing that there are no cycles of channel dependencies
containing only new channels or only old channels.
According to Lemma 3, all channel dependencies starting
in new channels are part ofDEP ðRnew;�newÞ. Thus, such a
cycle would imply a cycle of dependencies also in
DEP ðRnew;�newÞ, which contradicts Assumption 1. With
the exact same reasoning, there cannot be a cycle of
channel dependencies using old channels only as
DEP ðRold;�oldÞ also is cycle free according to Assump-
tion 1. Therefore, any cycle in DEP ðRT ;�T Þmust contain
both old channels and new channels and, in particular, a
dependency from an old channel to a new channel. This
would require a CND-tuple hc; c0; di 2 �T such that c is an
old channel and RT ðd; c0Þ is a new channel.

Since c is an old channel, we know that the packet
with header in c0 was routed according to Rold when it
was in c. According to Lemma 1, we know that it must
also be routed according to Rold in channel c0; thus, the
prevailing routing function for channel c0 is Rold. Since
RT ðd; c0Þ ¼ Roldðd; c0Þ, we know that channel RT ðd; c0Þ will
receive an old packet; thus, it cannot yet have received a
token according to Lemma 2. Therefore, it must be an old
channel, which leads to a contradiction. tu

4 EVALUATION

In this section, we evaluate the proposed reconfiguration
protocol. First, we describe the methodology, traffic
patterns, and topologies that are used in the evaluation.
Then, we describe the metrics used and the implementation
details of the various alternative schemes used to compare
against the proposed protocol. Finally, we present the
results and analysis.

4.1 Evaluation Methodology

In conducting the evaluation, we developed a detailed
simulator that allows us to model the network at the cycle-
accurate level. The simulator has been used and validated
in different recent works [38], [39]. The simulator models
network end nodes, switches, and links.

Network end nodes are attached to switches through
regular links and generate packets at a given rate, whether or
not the traffic is accepted by the network. It is reasonable to
think that, in such situations, the generation of packets slows
down as there are dependencies among packet sources in
applications. In order to model this behavior, the end nodes
are modeled as having finite queues, each having a depth of
64 packets. If a queue overflows, packets are simply dropped
at the source, which is measured in the evaluation.

Links are assumed to be bit serial, with a data rate of
2.5 gigabits per second (Gbps). We model an 8 bytes/10 bytes
encoding [40]; thus, a new byte is transmitted every 4 ns.
The physical medium of the link is modeled as 15 m copper
cables, with a propagation delay of 5 ns/m. Switches are
modeled as having virtual channels and a nonmultiplexed

crossbar, thus allowing parallel forwarding of packets from
different virtual channels from the same input port (i.e., an
input speedup of 2). Input and output buffering is assumed
and, in our plotted experiments, they both have a depth of
1 Kbyte. This size has been chosen based on the knowledge
of buffer sizes for some existing InfiniBand components. We
have, however, also conducted experiments with 512 byte
buffers and the impact on the results from halving the
buffer size was negligible. Packets (both data and control)
have a maximum size of 58 bytes, divided into 32 bytes of
payload and 20 bytes of header. Flow control is implemen-
ted with special control packets of only six bytes. Flow
control and other control packets (mentioned in the
following) are taken into account in the simulations. Data
packets are routed at each switch by accessing a routing
table. Control packets are routed using source (directed)
routing, e.g., as in [11], [40]. Routing tables contain the
output port to be used at the switch for each possible
destination for packets at given input ports. The routing
delay at each switch is assumed to be 100 ns. This time
includes the lookup table, crossbar allocation, and connec-
tion setup through the switch.

All reconfiguration schemes assume the use of two data
virtual channels and one control virtual channel multi-
plexed onto the physical links. The data virtual channels are
used by data packets, whereas the control virtual channel is
used only by control packets for monitoring, notifying, and
issuing commands. The reason for this is that many
schemes, including the OSR protocol, require notifications
and routing table updates through a separate channel. Also,
one scheme used in the comparisons (i.e., the DS) requires
the use of two virtual channels. Credit-based flow control
and virtual cut-through switching are used to regulate the
virtual channels: A packet is transmitted over the link only
if there is enough buffer space to store the entire packet at
the receiving end of a scheduled virtual channel.

4.1.1 Reconfiguration Schemes Used in the

Comparisons

We evaluate the OSR protocol and the traditional non-OSR
process. In order to see how close our improvements to SR
bring us to achieving the performance efficiency of
previously proposed dynamic reconfiguration schemes,
we include comparisons against one of the best known
dynamic reconfiguration processes—the Double Scheme
(DS) [31]. In all cases, there exists a network manager (NM)
located on an arbitrary end node that monitors the network
for changes and orchestrates the reconfiguration. This is
achieved by sending control packets to all switches through
the control virtual channel. Upon the receipt of a “config-
uration” control packet, each switch informs the NM about
any changes in its attached links in order to discover the
new network topology, as in [31].

We model two different implementations of OSR which
differ in the order of events triggered once a topology
change is detected and the new routing tables are
calculated. In OSR Packet Drop Aware (OSR-PDA), tables
are sent in parallel with a “reconfiguration” control packet
that is broadcast by the NM to all end nodes and switches,
signaling nodes to generate reconfiguration tokens. In OSR
Latency Aware (OSR-LA), the NM first distributes and
stores the new routing tables into a secondary location in
the end nodes and switches before it broadcasts the
reconfiguration control packet. The former minimizes the

LYSNE ET AL.: AN EFFICIENT AND DEADLOCK-FREE NETWORK RECONFIGURATION PROTOCOL 769

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

time that Rold is in use, thus minimizing the number of
packets that could be dropped due to routing across failed
links/switches, but at the expense of possibly longer
average packet latency. The latter potentially reduces the
average packet latency but at the expense of possibly longer
reconfiguration time. This trade-off in the way OSR is
implemented is explored further in the following.

In DS, once a topology change is detected, the NM
computes the new routing tables and, afterward, it
distributes them to all end nodes and switches. At the
same time, it sends a “virtual channel drain” control packet
to all switches and end nodes, instructing them to drain one
of the two data virtual channels (i.e., VC-1). Packets residing
in that data virtual channel are transported through the
other data virtual channel at each switch. Drainage thus
occurs in parallel across all of the network switches. Once
the designated data virtual channel is empty network-
wide,5 the NM is notified. The NM then signals the end
nodes and switches (via control packets) to start using both
data virtual channels with the new routing function. The
drained virtual channel is used as the escape path for any
old packets in the other data virtual channel. Reconfigura-
tion completes once all end nodes and switches are able to
use both data virtual channels again.

In SR, once the topology change is detected, the NM
broadcasts a “network drain” control packet to all end
nodes, instructing them to halt packet injection. At the same
time, the NM starts computing the new routing tables. Once
the tables are computed and distributed to all nodes and
after the network is completely drained of all data packets,6

the NM sends control packets, instructing the end nodes to
resume packet injection. Reconfiguration completes once all
nodes can inject packets again.

Fig. 4a summarizes the events that distinguish each of
the reconfiguration schemes used in this evaluation. As can
be noticed, the change detection and routing table compu-
tation must be performed for all of the schemes. The latter
operation has been shown to dominate reconfiguration
time, depending on the routing algorithm used and the
topology [1], [41]. Its impact on network performance and
the number of dropped packets is the same, regardless of
the reconfiguration scheme, as the old routing function
remains in place for all schemes until a change is detected
and the new routing function is computed. As this paper
focuses on the reconfiguration process, detection/notifica-
tion is accounted for in the simulations, but the routing
table’s computation time is assumed to be zero, which
would be the case if tables were precomputed before the
reconfiguration event (i.e., for user-directed or planned
reconfiguration). Fig. 4b shows the behavior modeled for
each of the simulated reconfiguration schemes.

4.1.2 Traffic Patterns, Baseline Network Topology, and

Routing Algorithm

For each simulation run, we assume a constant packet
generation rate for all end nodes. To control the effect of
start-up instabilities, we ran an experiment with maximum
traffic injection on a 10� 10 torus network and measured
the development in throughput over time. The results are
plotted in Fig. 5 and they show that the network stabilizes
well before 10,000 packets have been sent. In order to
ensure that start-up instabilities do not affect our evaluation
results, reconfiguration is not invoked until 80,000 packets
have been transmitted.

Three different synthetic traffic patterns are modeled:
uniform, bit reversal, and hot spot. For uniform traffic, each
source sends packets to all destinations with equal prob-
ability. For bit reversal, each source sends traffic only to one
end node computed by reversing all bits of the source ID.
For hot spot, 10 percent of the sources selected randomly
inject traffic to the same destination, also selected randomly,
and the rest of the end nodes inject traffic to all other
destinations with equal probability.

770 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

Fig. 4. Reconfiguration schemes evaluated and events that distinguish them.

5. A distributed protocol is used for detecting that the designated data
virtual channel is empty network-wide [31]. Every switch sends a
notification to the NM once the buffers assigned to the data virtual channel
are empty and there are no data packets injected through the output links
sent by the switch.

6. In our simulations, it takes 26.4 �s, on average, for the baseline
network to drain itself completely of data packets under near-saturation
network loads.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

The reconfiguration schemes are evaluated on an 8� 8
torus baseline network. Two end nodes are attached to each
switch; thus, 128 end nodes exist in the system. The schemes
are evaluated on how well they handle link failure. Before a
random link failure occurs, the up*/down* [26] routing
algorithm—which is deadlock-free by design—is used as the
old routing function, with the root at node (0, 0). After the
link failure, the up�=down� algorithm is recomputed, but,
this time, with the root node set at node (3, 3) for the new
routing function.

4.1.3 Performance Metrics

One of the metrics used to measure the performance of the
reconfiguration scheme is average packet latency as it varies
over time. Packet latency is the time that a packet
experiences from the point at which it is generated by its
source until the point at which it is delivered to its
destination. Traditionally, the average packet latency is
plotted in relation to when packets are delivered, as
illustrated in Fig. 6a, as opposed to when packets are
generated, as illustrated in Fig. 6b. The plot in Fig. 6a
indicates that packets that arrived at time x exhibit an
average latency of y cycles. The weakness of this approach

is that the effect of reconfiguration on packet latency can be
averaged out. Latency measured immediately after reconfi-
guration starts will be heavily influenced by packets that
have completed most of their journey through the network
that has not yet undergone reconfiguration. Likewise,
immediately after reconfiguration, the results will be partly
influenced by packets that have not experienced any
reconfiguration effects and partly by packets that have
been delayed due to reconfiguration.

In this paper, we provide a different more accurate view
of packet latency. As shown in Fig. 6b, we plot the average
packet latency in relation to the time at which packets are
generated. With this, packets generated at time x are shown
to exhibit an average latency of y. By plotting the results this
way, the impact of reconfiguration on packet latency will be
more clearly exposed and latency comparisons can be made
between the schemes both during and after network
reconfiguration. In the following latency plots, the average
packet latency is broken down into the following compo-
nents: queue latency (QL), network latency (NL), and
maximum token latency (MTL). All of these components
sum to equal the total latency experienced by packets on
average. QL is the time that packets spend at the source end
node waiting to be injected. NL is the time that packets
spend within the network. MTL is the maximum time that
packets are blocked at the head of a queue waiting for its
supplied switch output port to transmit a reconfiguration
token. This time is relevant only for OSR.

The other metrics used in the evaluation are fairly
straightforward. The total reconfiguration time for the
schemes is measured, which is the time elapsed from the
detection of the topological change to the end of the
reconfiguration process. Network throughput is also mea-
sured, which is the average number of bytes per unit of time
which are delivered by switches plotted for each virtual
channel (two data and one control). Likewise, network
injection bandwidth is measured for each virtual channel,
which is the average number of bytes per unit of time which
is injected at network sources. Finally, the number of
dropped packets due to reconfiguration is also measured
for each scheme.

LYSNE ET AL.: AN EFFICIENT AND DEADLOCK-FREE NETWORK RECONFIGURATION PROTOCOL 771

Fig. 5. Stabilization of the network as a function of time. Throughput is

measured as a function of all of the messages received until a given

point.

Fig. 6. Average packet latency plotted in relation to (a) when packets are delivered (i.e., delivery time) versus (b) when packets are generated (i.e.,

generation time).

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

4.2 Results and Analysis

The OSR protocol is evaluated and compared against the
other reconfiguration schemes across various network load
rates and traffic patterns. Fig. 7 shows the performance
obtained in an 8� 8 torus network under uniform traffic
when no reconfiguration process is triggered. The figure
indicates the three network load rates that are used in the
simulations and their intensities relative to the network
saturation point. In what follows, the three ranges of load
rates are referred to as LOW, MEDIUM, and HIGH,
respectively.

Fig. 8 shows the average packet latency plotted against
the generation time for the different reconfiguration
schemes for uniform traffic under LOW, MEDIUM, and
HIGH traffic load rates. For all of the schemes, the start and
end times for reconfiguration are indicated with vertical
lines. For OSR-LA, an extra vertical line is added which
indicates when the routing tables have been uploaded and
the reconfiguration tokens are being injected. The first
observation is that the reconfiguration times for OSR (both
OSR-LA and OSR-PDA) and DS are 30 percent to 50 percent
less than SR. The reason for this is that, in both schemes, old
and new packets can be transported simultaneously in the
network, whereas, in SR, the network must be completely
drained before any new packets can be injected. On
average, OSR-PDA and OSR-LA reduce the SR time by
approximately 47.5 percent and 33.5 percent, respectively,
under LOW, MEDIUM, and HIGH network loads. The
reconfiguration times for OSR-PDA and DS are practically
the same. The slightly increased reconfiguration times of
OSR-LA, relative to OSR-PDA, are due to the serialization
of table distribution and token distribution. Table 1 sum-
marizes the reconfiguration times and percentages of
improvement for each under the simulated network loads.

Another important result based on the figures is that
OSR completely removes the need to queue packets at the
end nodes during reconfiguration, as done by SR. Indeed,
the average QL for OSR is zero for all simulated network
loads. This means that, with respect to QL, OSR performs as
well as the DS dynamic reconfiguration. In contrast, SR
experiences very high queuing latency as the injection of
traffic is completely halted. In Fig. 8, we can observe that SR
packets generated at the start of the reconfiguration period
experience QLs of up to 70 �s.

With regard to latency within the network, we observe
that the average packet latency of OSR-OPA due to the
reconfiguration process is significantly higher than that of

OSR-LA. Indeed, OSR-LA experiences a very small packet
latency increase during network reconfiguration, i.e., only
in the short period of time in which there are tokens in the
network. The reason for this difference is that, in OSR-PDA,
packets spend a lot of time waiting for the new routing table
to arrive at switches. In the plots, this is captured as an
increased MTL, even though the average token latency is
close to zero, since very few packets wait for a token.
Almost independent of the network load, there are some
packets in OSR-PDA that are blocked for a significant
amount of time (40 �s). These packets block the packets
coming from behind, thus introducing contention. This
effect rapidly spreads and, thus, packets in the network
experience higher latencies.

Fig. 8 also shows that SR has an increased NL relative to
all other schemes.7 The average packet latency is nearly two
orders of magnitude higher than OSR-LA and is factors
higher than OSR-PDA. This situation persists for a
prolonged period of time, even after reconfiguration has
completed. Latency is increased because, when traffic is
resumed, all of the end nodes inject their queued packets at
the maximum injection rate. This forces the network to
experience temporary congestion.

Let us consider injected traffic, as shown in Fig. 9,
covering the entire reconfiguration period for HIGH traffic.
For LOW and MEDIUM traffic, similar results were
obtained. For OSR-PDA, when the failure is detected, the
traffic in both data virtual channels is increased, as shown
by a traffic spike. This is due to the injection of the tokens
from each end node at roughly the same time. After that,
traffic injection is not blocked in any data virtual channel.
With regard to the control virtual channels, the plots show
that they are busy sending new routing tables to every
switch. For OSR-LA, similar behavior is observed; however,
the traffic spike experienced through data virtual channels
due to token injection occurs at the end of the reconfigura-
tion period since OSR-LA first distributes the routing tables
and then generates the tokens. For the DS, there is a spike in
injected traffic in the control virtual channel. This is due to
control packets sent through the virtual channel in order to
start the drainage process for one of the data virtual
channels (VC-1). Indeed, after this traffic spike, the data
virtual channel is no longer used until reconfiguration
completes. The other data virtual channel, however,
doubles its traffic injection since it now has to cope with
all the injected data traffic. The control virtual channel is
used throughout the reconfiguration period for distributing
routing tables and sending other notifications. Finally, for
SR, we observed that the injection of data packets is halted
during almost the entire network reconfiguration period. At
the end of reconfiguration, there is a data packet injection
spike due to most packets being queued at injection end
nodes, as noted earlier.

Let us now consider delivered traffic, shown in Fig. 10.
Again, only results for HIGH traffic are shown as LOW and
MEDIUM traffic give similar results. For OSR-PDA, the
delivered data traffic reaches zero during almost the entire
reconfiguration period. The network is quickly drained of
old packets as they reach their destination or a failed link,
but new packets remain blocked in the network for a while,

772 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

7. Although, in SR, traffic is stopped during reconfiguration, the plots
show traffic within the start and end of reconfiguration lines. This is
because latency is plotted at generation time and not at delivery time.

Fig. 7. Average packet latency versus data throughput for up*/down*

routing on 8 � 8 torus.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

waiting for the routing tables to be distributed. At the end
of reconfiguration, there is a spike of delivered traffic
corresponding to the data temporally queued within the
network. However, for OSR-LA, delivered traffic keeps
constant during almost the entire reconfiguration process.
At the end of reconfiguration, delivered data traffic is
reduced during a small interval over which old packets are
drained and tokens are propagated through the network.

For SR, the delivered traffic reaches zero during almost

the entire reconfiguration period and, at the end, a spike of

delivered traffic is observed, correlated with the spike

exhibited for injection. For the DS, the delivered traffic for

one data virtual channel drops to zero, whereas the other

data virtual channel doubles its delivered rate. This

observation for the DS is interesting for the reason that

LYSNE ET AL.: AN EFFICIENT AND DEADLOCK-FREE NETWORK RECONFIGURATION PROTOCOL 773

Fig. 8. Average packet latency at various generation times for uniform traffic, where various components of latency are broken down as follows: QL,

NL, and MTL.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

774 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

TABLE 1
Reconfiguration Times and Percentages of Improvement for the Different Reconfiguration Schemes

and Network Loads under Uniform Traffic

Fig. 9. Injected traffic per virtual channel for uniform traffic under a HIGH network load rate.

Fig. 10. Delivered traffic per virtual channel for uniform traffic under a HIGH network load rate.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

virtual channels are provided in many technologies to

support different service classes. It is clear that the only

reconfiguration scheme that sustains throughput over all

virtual channels during reconfiguration (thus not harming

any of the service classes) is OSR-LA. In this respect, it

actually outperforms the best known dynamic reconfigura-

tion technique, namely, the DS.
We now turn our attention to packets dropped due to the

reconfiguration scheme. Table 2 shows the number of

dropped packets by each reconfiguration scheme. The table

distinguishes between dropped packets through the failed

link and dropped packets at end nodes due to filling of the

source queue. As shown, OSR-PDA causes the fewest

number of dropped packets, i.e., zero. The reconfiguration

control packet that is broadcast by the NM to start the

reconfiguration process is sent over the control virtual

channel that has a higher priority than the data virtual

channels to allow it to arrive at all destinations quickly. The

end nodes can therefore send the reconfiguration token

before too many packets get queued. Packets that get

queued after the reconfiguration token is generated will use

the new routing function, thus avoiding the failed link.

LYSNE ET AL.: AN EFFICIENT AND DEADLOCK-FREE NETWORK RECONFIGURATION PROTOCOL 775

TABLE 2
Dropped Traffic for the Different Schemes and Network Loads under Uniform Traffic

Fig. 11. Average packet latency at the generation time under hot-spot traffic (Q.L.: Queue Latency, N.L. : Network Latency, MTL: Maximum Token

Latency).

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

OSR-LA, on the other hand, waits until routing tables are
distributed before generating reconfiguration tokens, caus-
ing more packets to be dropped due to routing across the
failed link according to the old routing function.

The DS scheme similarly loses packets during the
process of distributing the routing tables and also during
the period over which switches connected to the failed link
wait to receive the control packet that indicates that the new
routing tables can be used. The amount of dropped packets
for SR is higher than for OSR-PDA. For SR, the instruction
to stop traffic injection is sent serially to all end nodes. This
is an implementation detail. It is possible to broadcast the
command to stop traffic injection in SR in order to achieve a
packet loss similar to OSR-PDA. This, however, would
come at the cost of a concomitant increase in packet
dropping at the source end nodes. By comparing OSR-LA
and DS, we see that DS causes fewer dropped packets, but
the difference is not overwhelming. Note that the effects of
packet drops during the change detection and routing table
computation are not simulated. As discussed previously,
this time dominates the total reconfiguration time; thus, this
time will also dominate the number of packets dropped due
to the failing link. It could be argued, therefore, that the
difference in dropped packets between OSR-LA and DS is
not necessarily significant.

The results presented thus far are derived from simula-
tions driven by uniform traffic patterns. The reconfiguration
schemes are also evaluated using hot-spot and bit-reversal
traffic patterns. In what follows, only a selection of the
results is presented in which OSR-LA performs differently,
relative to what is observed for uniform traffic. For hot-spot
traffic, Fig. 11 shows packet latency for a HIGH network
load rate. Here, the base latency is around 5 �s as compared
to 1.5 �s for uniform traffic. It is observed that SR enters
saturation when launching the reconfiguration, as indicated
by the average NL increasing significantly. The most

interesting observation, however, is that OSR-LA experi-
ences significant token latency for a short period of time
due to the presence of token dependencies. Because of the
hot spot, old packets are drained more slowly, which affects
token propagation. Table 3 summarizes the reconfiguration
times for hot-spot traffic. As can be observed, for HIGH
traffic rates, OSR-LA experiences a higher reconfiguration
time (78 �s) as compared to uniform traffic, which is due to
the slower drainage of old packets and the induced higher
token latency.

The number of dropped packets for hot-spot traffic is
shown in Table 4. The number of dropped packets depends
on the required time for reconfiguration; thus, results are
mainly similar to the ones obtained for uniform traffic. The
number of packets dropped at the source end nodes is only
approximately 10 percent of what we see for uniform traffic.
This is because only 10 percent of the sources send packets
to the congested destination and thus experience packet
loss. Finally, in Figs. 12 and 13, we show the evolution of
latency after the reconfiguration processes have completed.
A clear observation is that OSR-PDA and SR need a long
relaxation time before the normal latency is reached.
However, DS and OSR-LA require very little recovery time.
This is due to the nonblocking nature of these schemes.
However, for SR and OSR-PDA, queued packets must be
delivered after reconfiguration and, as reconfiguration-
induced latency increases, the number of queued packets
(at end nodes or at switches) by the end of the reconfigura-
tion process also increases.

5 CONCLUSION

Although several techniques for dynamic network reconfi-
guration have been proposed recently, none, to our knowl-
edge, has found its way into commercial use. Static network
reconfiguration is the dominating approach used, despite
its apparent shortcomings. Improving the efficiency of SR is
of practical importance, thus motivating this research.

This paper describes how the various phases of SR can be
overlapped in order to increase parallelism. Packets routed
according to the new routing function can be injected and
routed in a network that undergoes reconfiguration
simultaneously to packets routed and delivered to end
nodes according to the old routing function. The proposed
OSR protocol benefits from reduced reconfiguration time,
packet latency, network downtime, and packet dropping
close to dynamic reconfiguration techniques (better for
OSR-PDA but worse for OSR-LA), without requiring
additional data virtual channels, while, at the same time,

776 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

TABLE 3
Comparison of Reconfiguration Times for the

Different Schemes under Hot-Spot Traffic

TABLE 4
Dropped Traffic for the Different Schemes under Various Loads and Hot-Spot Traffic

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

maintaining the generality and simplicity offered by
traditional SR. It also guarantees in-order delivery of
packets during network reconfiguration in the event that
the old and new routing functions are deterministic. A
detailed formal proof is developed which shows that the
OSR protocol is, indeed, deadlock-free.

In the evaluation of the proposed protocol, simulation
measurements and experiments were carefully designed to
allow fair comparison to other competing techniques.
Simulations were carried out, assuming finite buffers at
network injection points, and packets dropped due to buffer

overflow were measured in addition to packets dropped
due to encountering link failure. To better capture the
temporal effects of the reconfiguration processes, packet
latency is plotted in relation to when packets are generated
rather than when packets are delivered. Results show that
the OSR-LA provides significant improvement over tradi-
tional SR and performs similarly to the DS dynamic
reconfiguration technique. Given that the DS used in the
comparisons does not guarantee in-order delivery (even for
deterministic routing functions) and requires two sets of
data virtual channels, even more benefits become apparent.

LYSNE ET AL.: AN EFFICIENT AND DEADLOCK-FREE NETWORK RECONFIGURATION PROTOCOL 777

Fig. 12. Average packet latency at generation time under uniform traffic and MEDIUM network load.

Fig. 13. Average packet latency at generation time for uniform traffic pattern and HIGH network load.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

With regard to future work on network reconfiguration,
we believe that the most important challenges lie in its
application areas. In Section 4 of this paper, we focused on
topology changes induced by faults, but other important
application areas are adaptations to varying traffic loads
and planned component replacement. A particularly inter-
esting example of an emerging application area comes from
the NoCs. We will, in the relatively near future, see
processors with tens or even hundreds of cores on them
and, most likely, with an on-chip interconnection network
connecting the cores [42]. This will most likely mean that
future programs running on these chips will be parallel [43]
and that the hardware must accommodate several inde-
pendent parallel processes. The separation of coexisting
processes on the same hardware has been done by time-
sharing, scheduling, and context switches on single-core
CPUs and with virtualization of addresses on memory.
Mechanisms for ensuring that different processes use
separate resources in the network must therefore be
developed and fast network reconfiguration will be an
important ingredient in such a set of mechanisms.

ACKNOWLEDGMENTS

This work was supported in part by US National Science
Foundation (NSF) Grant CCF-0541417. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the NSF. The work was also supported by the
Spanish MEC under Grants CONSOLIDER-INGENIO
CSD2006-46 and TIN2006-15516-C04-04.

REFERENCES

[1] D. Teodosiu, J. Baxter, K. Govil, J. Chapin, M. Rosenblum, and M.
Horowitz, “Hardware Fault Containment in Scalable Shared-
Memory Multiprocessors,” Proc. 24th Ann. Int’l Symp. Computer
Architecture, Computer Architecture News vol. 25, pp. 73-84, 1997.

[2] K. Gharachorloo, M. Sharma, S. Steely, and S. Van Doren,
“Architecture and Design of AlphaServer GS320,” ACM SIGPLAN
Notices, vol. 35, no. 11, pp. 13-24, Nov. 2000.

[3] “The AlphaServer SC45 Supercomputer: Facts and Figures,” HP
SC45 Team, 2002.

[4] W. Barrett et al., “An Overview of the BlueGene/L Super-
computer,” Proc. ACM/IEEE Conf. Supercomputing, Nov. 2002.

[5] M.D. Schroeder et al., “Autonet: A High-Speed, Self-Configuring
Local Area Network Using Point-to-Point Links,” SRC Research
Report 59, Digital Equipment Corp., 1990.

[6] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, and W.-K. Su, “Myrinet: A Gigabit-Per-Second
Local-Area Network,” IEEE Micro, vol. 15, 1995.

[7] D. Garcia and W. Watson, “ServerNet2 II,” Lecture Notes in
Computer Science, vol. 1417, pp. 119-135, 1998.

[8] O. Feuser and A. Wenzel, “On the Effects of the IEEE 802.3x Flow
Control in Full-Duplex Ethernet LANs,” Proc. 24th IEEE Conf.
Local Computer Networks, pp. 160-161, Oct. 1999.

[9] “Guide to Myrinet 2000 Switches and Switch Networks” Myrinet,
www.myri.com, Aug. 2001.

[10] InfiniBand Architecture Specification Volume 1 Release 1.0a. Infini-
Band Trade Assoc., http://www.infinibandta.com, 2001.

[11] “Advanced Switching Core Architecture Specification,” ASI-SIG,
http://www.asi-sig.org/, 2004.

[12] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B.
Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma,
A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S.
Amarasinghe, and A. Agarwal, “The Raw Microprocessor: A
Computational Fabric for Software Circuits and General-Purpose
Programs,” IEEE Micro, vol. 22, no. 2, pp. 25-35, Mar./Apr. 2002.

[13] K. Krewell, “Sun’s Niagara Pours on the Cores,” Microprocessor
Report, pp. 1-3, Sept. 2004.

[14] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer, and
D. Shippy, “Introduction to the Cell Multiprocessor,” IBM J.
Research and Development, vol. 49, nos. 4/5, 2005.

[15] D. Berger et al., “TRIPS Tutorial: Design and Implementation of
the TRIPS EDGE Architecture,” Proc. 32nd Int’l Symp. Computer
Architecture, pp. 1-239, June 2005.

[16] M.B. Taylor, W. Lee, S.P. Amarasinghe, and A. Agarwal, “Scalar
Operand Networks,” IEEE Trans. Parallel and Distributed Systems,
vol. 16, no. 2, pp. 1-18, Feb. 2005.

[17] D. Krolak, “Unleashing the Cell Broadband Engine Processor: The
Element Interconnect Bus,” Proc. Fall Processor Forum, http://
www-128.ibm.com/developers/power/library/pa-fpfeib/, Nov.
2005.

[18] P. Gratz, K. Sankaralingam, H. Hanson, P. Shivakumar, R.
McDonald, S.W. Keckler, and D. Burger, “Implementation and
Evaluation of a Dynamically Routed Processor Operand Net-
work,” Proc. First Network-on-Chip Symp., 2007.

[19] P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New
Computer Communication Switching Technique,” Computer Net-
works, vol. 3, pp. 267-286, 1979.

[20] W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,” IEEE Trans. Compu-
ters, vol. 36, no. 5, pp. 547-553, May 1987.

[21] W.J. Dally, “Virtual-Channel Flow Control,” IEEE Trans. Parallel
and Distributed Systems, vol. 3, no. 2, pp. 194-205, Mar. 1992.

[22] J. Duato, “A Necessary and Sufficient Condition for Deadlock-
Free Adaptive Routing in Wormhole Networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 6, no. 10, pp. 1055-1067, Oct.
1995.

[23] J. Duato, “A Necessary and Sufficient Condition for Deadlock-
Free Routing in Cut-Through and Store-and-Forward Networks,”
IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 8, pp. 841-
854, Aug. 1996.

[24] W.J. Dally and B.P. Towles, Principles and Practices of Interconnec-
tion Networks. Morgan Kaufmann, 2004.

[25] S. Warnakulasuriya and T.M. Pinkston, “A Formal Model of
Message Blocking and Deadlock Resolution in Interconnection
Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 11,
no. 2, pp. 212-229, Feb. 2000.

[26] M.D. Schroeder, A.D. Birrell, M. Burrows, H. Murray, R.M.
Needham, T.L. Rodeheffer, E.H. Satterthwaite, and C.P. Thacker,
“Autonet: A High-Speed, Self-Configuring Local Area Network
Using Point-to-Point Links,” SRC Research Report 59, Digital
Equipment Corp., 1990.

[27] T.L. Rodeheffer and M.D. Schroeder, “Automatic Reconfiguration
in Autonet,” Proc. 13th ACM Symp. Operating Systems Principles,
pp. 183-197, Oct. 1991.

[28] O. Lysne and J. Duato, “Fast Dynamic Reconfiguration in
Irregular Networks,” Proc. 29th Int’l Conf. Parallel Processing,
pp. 449-458, 2000.

[29] R. Casado, A. Bermúdez, J. Duato, F.J. Quiles, and J.L. Sánchez, “A
Protocol for Deadlock-Free Dynamic Reconfiguration in High-
Speed Local Area Networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 12, no. 2, pp. 115-132, Feb. 2001.

[30] N. Natchev, D. Avresky, and V. Shurbanov, “Dynamic Reconfi-
guration in High-Speed Computer Clusters,” Proc. Third IEEE Int’l
Conf. Cluster Computing, pp. 380-387, 2001.

[31] T. Pinkston, R. Pang, and J. Duato, “Deadlock-Free Dynamic
Reconfiguration Schemes for Increased Network Dependability,”
IEEE Trans. Parallel and Distributed Systems, vol. 14, no. 8, pp. 780-
794, Aug. 2003.

[32] J. Duato, O. Lysne, R. Pang, and T.M. Pinkston, “Part I: A Theory
for Deadlock-Free Dynamic Network Reconfiguration,” IEEE
Trans. Parallel and Distributed Systems, vol. 16, no. 5, pp. 412-427,
May 2005.

[33] O. Lysne, T.M. Pinkston, and J. Duato, “Part II: A Methodology for
Developing Deadlock-Free Dynamic Network Reconfiguration
Processes,” IEEE Trans. Parallel and Distributed Systems, vol. 16,
no. 5, pp. 428-443, May 2005.

[34] D. Avresky and N. Natchev, “Dynamic Reconfiguration in
Computer Clusters with Irregular Topologies in the Presence of
Multiple Node and Link Failures,” IEEE Trans. Computers, vol. 54,
no. 5, May 2005.

[35] J.R. Acosta and D.R. Avresky, “Intelligent Dynamic Network
Reconfiguration,” Proc. 21st Int’l Parallel and Distributed Processing
Symp., pp. 1-9, 2007.

778 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 6, JUNE 2008

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

[36] J.M. Mellor-Crummey and M.L. Scott, “Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors,” ACM
Trans. Computer Systems, vol. 9, no. 1, pp. 21-65, 1991.

[37] J. Duato and T.M. Pinkston, “A General Theory for Deadlock-Free
Adaptive Routing Using a Mixed Set of Resources,” IEEE Trans.
Parallel and Distributed Systems, vol. 12, no. 12, pp. 1219-1235, Dec.
2001.

[38] J.M. Montañana, J. Flich, A. Robles, and J. Duato, “A Scalable
Methodology for Computing Fault-Free Paths in Infiniband Torus
Networks,” Proc. Sixth Int’l Symp. High-Performance Computing,
2005.

[39] J.M. Montañana, J. Flich, A. Robles, and J. Duato, “Reachability-
Based Fault-Tolerant Routing,” Proc. 12th Int’l Conf. Parallel and
Distributed Systems, pp. 515-524, 2006.

[40] InfiniBand Architecture Specification, InfiniBand Trade Assoc.,
2000.

[41] A. Bermúdez, R. Casado, F.J. Quiles, and T.M. Pinkston,
“Evaluation of a Subnet Management Mechanism for InfiniBand
Networks,” Proc. 32nd Int’l Conf. Parallel Processing, pp. 117-124,
2003.

[42] F. Angiolini, P. Meloni, S.M. Carta, L. Raffo, and L. Benini,
“Layout-Aware Analysis of Networks-on-Chip and Traditional
Interconnects for MPSoCs,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 26, no. 3, pp. 421-434, 2007.

[43] F. Poletti, A. Poggiali, D. Bertozzi, L. Benini, P. Marchal, M. Loghi,
and M. Poncino, “Energy-Efficient Multiprocessor Systems-on-
Chip for Embedded Computing: Exploring Programming Models
and Their Architectural Support,” IEEE Trans. Computers, vol. 56,
no. 5, pp. 606-621, May 2007.

Olav Lysne received the MS and DrSci degrees
from the University of Oslo in 1988 and 1992,
respectively. He is currently the director of basic
research at the Simula Research Laboratory and
a professor of computer science at the University
of Oslo. He has been a member of the program
committees of several of the most renowned
conferences, including HPCA, IPDPS, ICPP,
EuroPar, and HiPC. He was a general cochair
of ICPP ’05. He has participated in a series of

European projects. His research interests include algebraic specification
and term rewriting. Over the last decade, he has been working on
interconnects, in particular on effective routing, fault tolerance, and
quality of service. He has published around 70 academic papers. He is a
member of the IEEE.

José Miguel Montañana received the BS
degree in physics and the MS degree in
electronics engineering from the University of
Valencia in 1997 and 2002, respectively. He is
currently working toward the PhD degree in the
Department of Computer Engineering at the
Technical University of Valencia. His research
interests include fault tolerance and reconfigura-
tion in interconnection networks.

José Flich received the MS and PhD degrees in
computer science from the Universidad Politéc-
nica de Valencia, Spain, in 1994 and 2001,
respectively. In 1998, he joined the Department
of Computer Engineering (DISCA) at the Uni-
versidad Politécnica de Valencia, where he is
currently an associate professor of computer
architecture and technology. He has been a
member of the program committee in different
conferences, including ICPP, IPDPS, HiPC,

CAC, ICPADS, and ISCC. He is also a cochair of CAC and INA-OCMC
and the vice-chair of EuroPar. His research interests include high-
performance interconnection networks for multiprocessor systems,
cluster of workstations, and networks on chip. He is a member of the
IEEE Computer Society.

José Duato received the MS and PhD degrees
in electrical engineering from the Polytechnic
University of Valencia, Spain, in 1981 and 1985,
respectively. He was an adjunct professor in the
Department of Computer and Information
Science at The Ohio State University. He is
currently a professor in the Department of
Computer Engineering (DISCA) at the Polytech-
nic University of Valencia. His research interests
include interconnection networks and multipro-

cessor architectures. He has published more than 380 refereed papers.
He proposed a powerful theory of deadlock-free adaptive routing for
wormhole networks. Versions of this theory have been used in the
design of the routing algorithms for the MIT Reliable Router, the Cray
T3E supercomputer, the internal router of the Alpha 21364 micro-
processor, and the IBM BlueGene/L supercomputer. He is the first
author of Interconnection Networks: An Engineering Approach. He was
a member of the editorial boards of the IEEE Transactions on Parallel
and Distributed Systems, IEEE Transactions on Computers, and IEEE
Computer Architecture Letters. He was a general cochair of ICPP ’01,
the program committee chair of HPCA ’04, and a program cochair of
ICPP ’05. He was also a cochair, a member of the steering committee,
the vice-chair, or a member of the program committee for more than 55
conferences, including the most prestigious conferences in his area:
HPCA, ISCA, IPPS/SPDP, IPDPS, ICPP, ICDCS, EuroPar, and HiPC.
He is a member of the IEEE.

Timothy Mark Pinkston received the BSEE
degree from The Ohio State University in 1985
and the MSEE and PhD degrees from Stanford
University in 1986 and 1993, respectively. He is
currently a professor in the Ming Hsieh Depart-
ment of Electrical Engineering in the Viterbi
School of Engineering at the University of
Southern California. Since January 2006, he
has been serving a three-year term as the
program director of the Computer and Informa-

tion Science and Engineering Directorate of the US National Science
Foundation (NSF) for the computer systems architecture area and, more
recently, the Expeditions in Computing Program. His research interests
include interconnection networks and communication architectures for
parallel processing systems, in particular multicore and multiprocessor
computers. He has served on the editorial board of the IEEE
Transactions on Parallel and Distributed Systems and has been a part
of the organizing committee of several prestigious conferences,
including ISCA, HPCA, IPDPS, ICPP, and HiPC. He was the program
chair of ICPADS ’06 and the general chair of IPDPS ’07. He will serve as
the program chair of HPCA-15. He is a senior member of the IEEE.

Tor Skeie received the MS and PhD degrees in
computer science from the University of Oslo in
1993 and 1998, respectively. He is currently an
associate professor at the Simula Research
Laboratory and the University of Oslo. He has
several years of experience as a researcher in
the interconnect domain. His work is mainly
focused on scalability, effective routing, fault
tolerance, and quality of service in switched
network topologies. He is also a researcher in

the industrial Ethernet area. The key research topics here have been the
road to deterministic Ethernet end-to-end and how precise time
synchronization can be achieved across switched Ethernet.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LYSNE ET AL.: AN EFFICIENT AND DEADLOCK-FREE NETWORK RECONFIGURATION PROTOCOL 779

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

