Destination-Based HoL Blocking Elimination *

T. Nachiondo, J. Flich, and J. Duato
Dept. Informatica de Computadores y Sistemas
Universidad Politécnica de Valencia
Camino de Vera, 14, 46071-Valencia, Spain
{tnachion,jflich,jduato } @disca.upv.es

Abstract

Congestion management is likely to become a critical is-
sue in interconnection networks, as increasing power con-
sumption and cost concerns will lead to the use of smaller
networks. As congested packets introduce head-of-line
(HoL) blocking to the rest of packets, congestion spreads
quickly. The best-known solution to HoL blocking, Virtual
Output Queues (VOQs), is not scalable at all or too costly
when implemented in large networks. In previous works, we
proposed an efficient and cost-effective solution, referred to
as Destination-Based Buffer Management (DBBM). DBBM
groups destinations into different sets, and packets ad-
dressed to destinations in the same set are mapped to the
same queue. DBBM eliminates most of the HoL blocking
(among packets addressed to different sets), achieving very
good results in terms of throughput and scalability. How-
ever, depending on the distribution of packet destinations,
it may introduce an uncertain degree of unfairness among
packets mapped to the same queue.

In order to overcome this problem we propose the Dy-
namic DBBM mechanism (DDBBM). DDBBM dynamically
eliminates the HoL blocking among packets mapped to
the same queue in DBBM. Performance results show that
DDBBM keeps (and in some cases improves) the good re-
sults achieved by DBBM in terms of throughput and scala-
bility. Moreover, DDBBM solves the unfairness introduced
by DBBM. Additionally, as an example of applicability, in
this paper we show that DDBBM can be applied to Infini-
Band with no hardware modification.

1 Introduction

Many compute-intensive applications (nuclear weapon
simulations, protein folding, global climate modeling, etc.)

*This work was supported by the Spanish MCYT under Grant
T1C2003-08154-C06-01, by Universidad Politecnica de Vaencia under
Grant 20040937, and by Junta de Comunidades de Castilla La Mancha
under Grant PBC-05-005-2.

require continued research and technology development
to deliver computers with steadily increasing computing
power. The required levels of computing power can only
be achieved with massively parallel computers. Examples
of these systems are the Earth Simulator [9] and the Blue-
Gene/L [5]. In these systems, interconnection networks
(ICTNs) with low communication latencies and high band-
width are becoming a key component.

Also, internet portal servers and datacenter servers are
emerging environments where high performance ICTNs
(InfiniBand [13], Myrinet [6] ...) are being preferred to
build cluster-based systems with adequate response time to
applications and final users.

In these networks contention is a classic problem. Con-
tention occurs when two packets compete for the same re-
source (typically a link). As the channel capacity is lim-
ited, one of the packets will be transmitted, while the other
will wait. If packets belonging to different flows request the
same resource, contention will occur among all the packets,
and flows will advance through the network at a lower pace.
Moreover, contention may derive in severe congestion if the
situation persists over time. In a congested situation, pack-
ets experience high latencies and the network collapses.

Traditionally, congestion has been managed by using
two different strategies: proactive techniques and reactive
techniques. Proactive techniques consist on preventing the
formation of congestion. Data is injected into the net-
work in such a way that congestion should never occur.
This is achieved either by reserving in advance network re-
sources (avoidance-based techniques) [18, 4] or by limit-
ing the routes followed by packets (prevention-based tech-
niques) [1, 16]. In general, the use of both techniques needs
a transmission scheduling that requires information about
the occupancy of network resources (buffers, links, etc.)
thus leading to inefficient solutions.

On the other hand, reactive techniques consist on detect-
ing the congested situations and activating later some mech-
anisms to eliminate the congestion. Most of the proposed
mechanisms [17, 8, 3] consist on notifying congestion to
the end nodes in order to cease or reduce the injection of
packets.

However, recently, a totally different approach has been
provided [12]. This new approach relies on the idea that
congestion is not a problem by itself. Simply, there are too
many packets competing for the same resource. The real
problem is the negative effects introduced by the conges-
tion. Once different flows become congested within the
network (forming a congestion tree) they introduce HoL
blocking to the rest of non-congested flows. HoL blocking
occurs when a packet at the head of a queue can not be for-
warded, and it blocks the rest of packets in the queue; even
if those packets could make forward progress. If the HoL
blocking were removed, then congestion would be harm-
less. Based on this approach, in [12] a new mechanism
is provided, referred to as RECN. This mechanism detects
congestion within the network, and instead of eliminating
the congestion, it eliminates the HoL blocking introduced
by the congested packets. With this mechanism, maximum
network throughput is achieved regardless of the presence
of congestion. Unfortunately, RECN has been designed for
Advanced Switching (AS) [15] as it relies on the use of
source routing for checking if a packet belongs to a con-
gested tree, which prevents RECN to be applied to other
networks technologies such as InfiniBand (since InfiniBand
uses distributed routing). Moreover, RECN requires some
logic at the switches (queues and control structures) not
available in commercial products.

2 Motivation

It is well known that VOQs at network level (referred in
this paper to as VOQ) [2, 14] is the best-known solution
to the HoL blocking problem. In VOQ,..;, every switch
port implements as many queues as final destinations, and
each queue is used only by packets addressed to a unique
destination. Although VOQ@ . completely eliminates HoL
blocking, it is not scalable at all, since memory require-
ments increase quadratically with the number of end nodes
in the network. This situation is aggravated by the increas-
ing demand for quality of service (QoS), as every service
level requires a dedicated queue per port.

An alternative is the use of VOQs at switch level (re-
ferred in this paper to as VOQ). In VOQ 4, €ach switch
has at every input port as many queues as output ports, and
packets are mapped according to the requested output port
at the switch. Although the number of queues is signifi-
cantly reduced, HoL blocking can still occur between flows
sharing a subset of consecutive links along their paths. In-
deed, in [7, 11] it was demonstrated that as network size
increases, the percentage of HoL blocking not solved by
VOQs,, increases.

In [10, 7, 11] we proposed and evaluated an scalable and
cost-effective solution to the HoL blocking problem, the
Destination-Based Buffer Management (DBBM) mapping
scheme. In DBBM packets are mapped to queues accord-
ing to their destination (as in VOQ@,¢;), however, the num-
ber of queues is significantly reduced (even lower than the

ones used in VOQ,,,). Basically, in DBBM each queue
stores only packets for a subset of destination ports. This
can be viewed as if the physical output ports of the net-
work were grouped into a smaller set of logical output ports,
and a queue was used at each switch to allocate only pack-
ets destined to a particular logical output port (i.e., VOQ at
the logical port level). Therefore, the HoL blocking among
packets in different logical ports is eliminated. The sim-
plest implementation of DBBM is to use the lower bits of
the destination 1D of a packet to select the queue (we refer
to this as modulo mapping). DBBM achieves a trade-off
among implementation cost (the set of queues is reduced
and the mapping function required at switches is simple)
and efficiency (DBBM has demonstrated to be an efficient
mapping scheme, obtaining much better performance than
VOQsw).

Unfortunately, DBBM can still suffer from HoL block-
ing (among packets addressed to the same logical port). The
percentage of affected destinations (victimized destinations)
will depend on the number of queues. For example, with
DBBM with 4 queues, only 25% of destinations will po-
tentially be affected by the congested destination. Thus,
as more queues were used in DBBM, the percentage of af-
fected destinations would decrease. Also, the percentage of
HoL blocking not solved by DBBM depends on the num-
ber of congested destinations. If the number of congested
destinations increases, potentially, more queues in DBBM
will suffer HoL blocking, and the percentage of victimized
destinations will increase.

As an example, Figure 5 shows the received traffic of
each end node in a 64 x 64 multistage network when ran-
dom traffic is sent to all destinations and a hotpot is formed
at end node 30. In the case of DBBM with 8 queues (and
modulo mapping) we can observe that every eight destina-
tions there is one with a significant lower reception rate.
This is because of the HoL blocking introduced by the con-
gested destination, thus introducing unfairness. Notice that
this problem comes from the static nature of DBBM, as it
always maps the same destinations into the same queues.

In this paper we present an effective mechanism able to
deal with the HoL blocking problem as DBBM does, but
overcoming the DBBM fairness weakness. The proposed
mechanism, referred to as Dynamic DBBM (DDBBM), will
eliminate most of the HoL blocking by using the DBBM
technique, and whenever a destination becomes congested,
its traffic will be dynamically separated. That is, the con-
gested flow will be separated from the non-congested ones,
thus, the unfairness introduced by DBBM will be totally
eliminated.

This mechanism will be also designed in such a way that
can be used in InfiniBand. In this paper we will address
the main aspects that must be dealt with in InfiniBand in
order to implement DDBBM, without requiring any change
to current InfiniBand switch architectures.

The rest of the paper is organized as follows. In Section 3
we describe the new proposed technique (DDBBM). Next,

in Section 4 we describe how the mechanism can be applied
to InfiniBand. In Section 5 we analyze DDBBM in terms
of scalability, throughput, robustness, and most important,
fairness. Finally, we draw our conclusions in Section 6.

3 Dynamic DBBM (DDBBM)

DDBBM eliminates the HoL blocking not handled by
DBBM (the one caused among packets addressed to the
same set of destinations). Therefore, DDBBM should be
seen as an improvement of DBBM, where all the good prop-
erties of DBBM still remain (most of the HoL blocking is
eliminated with a low implementation complexity).

Basically, the DDBBM mechanism works as follows.
When an end node detects that itself is a congested desti-
nation, it notifies that situation to the sources sending traffic
to it. Upon reception of the notification, sources will inject
packets addressed to the congested destination with a bit ac-
tivated (at the packet header). This bit is used by switches
to separate congested flows from non-congested flows. In
order to do this, at each input port on every switch there is
an additional queue (referred to as the dynamic queue) des-
tined to allocate the congested flows, whereas the remaining
queues (referred to as DBBM queues) are used to allocate
non-congested flows according to DBBM. Thus, each time
a packet is received with its bit activated it is mapped to the
dynamic queue. As an example, in a DDBBM mechanism
with 8 queues for DBBM and a dynamic queue, a packet
addressed to destination 48 will be mapped to queue zero
(modulo mapping). However, if destination 48 becomes
congested, then packets addressed to that destination will
be mapped to the dynamic queue. As the congested packets
will be mapped to a different queue, DBBM queues will not
allocate congested packets and therefore, the HoL blocking
that packets addressed to destination 48 might cause will be
eliminated.

DDBBM resembles a limitation-based congestion con-
trol mechanism where destination nodes detect congestion
and inform sources to limit the injection (to eliminate con-
gestion). However, notice that DDBBM neither limits
source traffic injection nor eliminates congestion. Instead,
it will let the sources to keep their injection rate. A well-
known problem of limitation-based protocols is that their
efficiency depends on network size and link bandwidth.
Probably, at the moment sources are notified, the conges-
tion may be formed within the network or may even van-
ished, thus introducing oscillations. However, this problem
has a minor impact when DDBBM s used, as congestion
will only affect to a small percentage of packets.

3.1 Detecting Start/End of Congestion

We need a fast and accurate detection mechanism at the
end node. The mechanism should be fast in order to min-
imize the time during which HoL blocking takes place.

Also, the mechanism should be accurate in order to pre-
vent false positive detections. Inaccurate detections could
lead to worse results, since extra HoL blocking could be
introduced. For instance, if the mechanism detects that
two destinations are congested, one of them wrongly de-
tected, massive HoL blocking would be introduced to the
non-congested flow (as packets for both destinations would
be mapped to the dynamic queue). Thus, the key piece of
DDBBM is the congestion detection mechanism at every
end node.

As a first approach to the detection mechanism, each end
node observes its received traffic rate. An end node consid-
ers that it is becoming congested whenever its reception rate
is higher than a fixed threshold value (Detection Thresh-
old expressed in bytes, DT"). Similarly, an end node is no
longer congested whenever its reception rate is lower than
a fixed threshold value (Low Threshold expressed in bytes,
LT). The reception rate can be easily computed at the end
node. Simply the number of bytes received must be counted
during a defined reception time frame (7" F expressed in cy-
cles).

With this mechanism, permanent congestion at a destina-
tion will be detected sooner or later (depending on the DT
and LT threshold values). However, experiencing a high
reception rate does not necessarily means that the end node
is congested. Indeed, congestion occurs at a destination end
node only when there is more bandwidth demand than the
offered bandwidth at the destination. Since the end node
only can count the quantity of bytes received, it does not
know if the high reception rate is because of a congested
situation (sources are requesting more bandwidth than the
offered one) or if it is because of sources are requesting
just the offered bandwidth. The only way to properly iden-
tify congestion would be achieved by inspecting switches
and source end nodes. If they (switches and/or end nodes)
start accumulating packets then there is a congested situ-
ation. However, notice that inspecting switches and end
nodes would increase the complexity of the mechanism.

Instead, DDBBM will detect congestion at the destina-
tion end nodes by considering the number of sources (IV.S)
sending traffic to the destination and their injection rates
(Source Injection Threshold, SIT). In case an end node is
congested, most of its received traffic will be generated by
few sources. So, some sources will be injecting more traffic
than the rest.

Figure 1 shows the detection mechanism with all the
parameters to be considered. A register is used per each
different threshold to be considered (DT, LT, NS, and
SIT). Also, additional registers are used for the time frame
(T'F) in cycles, the overall number of bytes received (Over-
all bytes received, ORB), and a bank of registers for the
number of bytes received per source (Source bytes received,
SRB).

The mechanism works as follows. At the start of a time
frame, the counter is set with the T'F' value and the ORB
and all the SR B registers are set to zero. During the time

frame, the counter is decremented cycle by cycle and the
reception rate is quantified. Whenever a new packet arrives,
the ORB register and the corresponding SR B register are
updated accordingly.

When the counter reaches zero a time frame expires and
the detection mechanism is triggered. At this point, the
comparers are enabled. In particular, ORB and DT register
are compared. Also, all the SR B registers are compared in
parallel with the SIT register. Then, the number of SRB
registers with larger values than the ST register is counted,
and the sum of them compared with the V.S register. With
all this processing, the final decision on congestion is made.
If the number of bytes received (ORB) is higher than the
DT register and the number of sources sending too much
data is higher than the .S register, then the end node is
considered as congested. In that situation, the congestion
bit (C'B) is set. However, if the number of bytes received
(ORB) is lower than the LT register, the end node is not
considered congested anymore and the C'B bit is reset. Re-
gardless of the detected situation, at this point in time a new
time frame is started and all the process repeated.

3.2 Notification of Congestion

Once an end node detects the start or the end of conges-
tion (the C'B bit changes), it notifies the new situation to the
sources that have sent packets recently. This information is
available in the detection mechanism logic (SRB register
with non-zero value). While the C'B bit is set, whenever
the end node receives a packet from a new source, it will
send a notification to the source.

When end of congestion is detected (C' B bit is reset), the
end node only notifies the sources that were previously no-
tified about the congestion. Since the information located in
the detection mechanism is reset each time frame, and the
congested situation may last several time frames, the end
node needs a data structure to keep the information regard-
ing the notified sources. For this reason, a notification bit
vector (referred to as N BV) is used at each end node. The
notification bit vector has as many elements (bits) as end
nodes in the system. Once congestion is detected, the end
node sends a notification to all the end nodes that have sent
traffic within the time frame (SR B register with a non zero
value). At the same time, the corresponding bits in the no-
tification vector are set. During the time the C'B bit is set,
if a new source sends data to the end node, it will be noti-
fied, and its corresponding bit will be set. When the end of
congestion is detected (C B bit is reset) a notification will
be sent to those end nodes with their bits set in the notifi-
cation vector. At the same time, the corresponding bits in
the notification vector will be reset. DDBBM will use an
specific control packet to notify the current congestion sit-
uation (referred to as a notification packet). Figure 1 shows
the notification logic with all the parameters to be consid-
ered.

3.3 Injecting and Mapping Packets

Each end node has a bit vector (referred to as status bit
vector) with as many bits as end nodes on the network. In
the status bit vector, each bit corresponds to an end node
status. When the bit for an end node is set, it means that the
end node is considered as a congested destination. Initially
all the end nodes are considered as non-congested. When
an end node receives a notification packet (meaning start or
end of congestion) it commutes the bit of the end node that
sent the notification. Thus, the status bit mirrors the C B bit
at destination.

When an end node has data to transmit, a data packet is
built and injected. However, a new bit at the header (the
congestion bit) is used. The value of the congestion bit is
stamped directly from the status bit vector. Therefore, only
packets addressed to a congested destination have activated
their congestion bit.

Switches must identify packets going to a congested des-
tination in order to separate them from the rest of traffic.
Congested flows must be mapped to the dynamic queue,
while the other flows must be mapped to the DBBM queues.
The allocation decision is taken based on the congestion
bit of each arriving packet. If the bit is set to zero, the
packet is mapped to a DBBM queue (DBBM modulo map-
ping). However, if the bit is set to one, the received packet
is mapped to the dynamic queue.

The dynamic queue can be flow controlled in the same
way as the other queues are. One option is to use separate
credit counters for each queue, and injecting the packet to
the next switch based on the selected queue. Another option
is using credit-based flow control for the entire memory and
status-based flow control (e.g. on/off) for each queue.

3.4 Out of order delivery issues

Since traffic is dynamically separated, out of order issues
may appear. Out of order may be present only among pack-
ets for the same flow (source-destination pair). In DBBM,
such packets are mapped to the same set of queues, thus
they arrive at the destination in the same order they were
injected. However, in DDBBM, two consecutive packets
injected from the same source to the same destination may
arrive out of order, simply because the second packet is sep-
arated from the normal traffic and thus mapped to the dy-
namic queue, thus potentially advancing at a faster rate than
the previous packet.

In order to guarantee in order delivery (if required), the
sender must ensure that packets belonging to the same mes-
sage are handled in the same way. For this reason, if the
sender receives a notification while a message is being in-
jected (some packets belonging to that message have al-
ready been sent), it will not modify the congestion bit in
the remaining packets of that message. The new value will
be applied to packets belonging to the next message.

Reset

received packet (pkt) . X
source SRB register file
0~
input link § g?fet
s N-1
w SRB
a SRB; 2
+size(pkt) SRB ¢

+size(pkt), reset
—D{ ORB
CB==1 Send Start of Congestion to source
NBV/[source] == 0 set NBV[source]

CB==0 Send End of Congestion to x
NBV[x] == 1 reset NBV[x]

source

—

CB bit E

]

Notification Bit Vector (NBV)

Notification Logic

zero enable enable

V Reset CB

f<— SetCB

detect 1
j} SetCB CcB

detect 2 = ResetCB

num comparers

with A>B
NumSrcs

Figure 1. Logic for measuring, notifying, and detecting congestion.

4 Implementation of DDBBM on InfiniBand

One of the goals of the paper is to adapt DDBBM to
InfiniBand (IBA) with no switch modification. Indeed only
tables provided by the standard and located at switches will
be modified.

In IBA, routing and virtual channel (they are referred to
as Virtual Lanes, VLs) selection is based on the destina-
tion local ID (DLID) and the service level (SL) fields of the
packet header. These two fields are computed at the source
node and do not change along the path. Every switch has a
forwarding table which provides only one output port (and
always the same) for each destination. Thus, IBA imple-
ments deterministic routing.

Up to 15 data virtual lanes can be implemented in IBA.
Virtual lane selection is based on the use of service levels
(SLs). By means of SLtoVL mapping tables, located on
every switch, SLs are used to select the proper VL at each
switch. This table returns, for a given input port and a given
SL, the VL to be used at the corresponding output port. For
this, the SL is placed at the packet header and cannot be
changed by the switches. Therefore, we should also assign
the proper SL that must be used for a given path. VLs and
SLs were initially defined in IBA for providing QoS and
deadlock avoidance.

Endnode 18 Endnode 30
Packet Packet
[—— —/—— [
s=1 |0 0= 113 0o o s
VL=0 ipor] 1 oport — VL=0
Dst=30 —/ —/ Dst=30
— —
FTE0=1 g FT(30)=0
\
SLToVL(0,1,1) =1 SLToVL(1,1,0) =0
ipot” " oport

Figure 2. Example of the VLs used in IBA.

Figure 2 shows a routing example in InfiniBand. When-
ever a packet is injected into the network, the end node (end
node 18) computes the SL of the packet (there are up to 16
SLs) and the initial VL to use. In the example, the SL is set
to 1 and the initial VL is set to 0. At the first switch the VL
used to map the packet is VLO (as the initial VL was set to
zero). At that switch the next VL to use is changed accord-
ing to the SLtoVL table. In particular, the SLtoVL table at
the first switch indicates that at the next switch the VL to
use will be VL1. Notice also that the output port selected
at each switch is extracted from the forwarding table (FT
function in the example).

To implement DDBBM we will use SL identifiers and
different VVLs. A particular VL (referred to as V' L;) can be
used along any path by using a SL identifier (referred to as
SL;)and all the SLtoVL tables being programmed in such a
way that whenever the SL of the packet is SL;, regardless of
the input and output ports, the provided VL is V L;. Thus, if
we want to implement DDBBM with 5 queues (4 queues for
DBBM, and one for the dynamic queue) we must reserve 5
SL identifiers and fill the corresponding SLtoVL tables.

Now, at the end nodes we need to compute for each
packet the proper SL. We need to implement the status bit
vector and the modulo selection at the end node. For effi-
ciency reasons the vector should be included at the network
interface. Simply whenever a packet is going to be injected,
the status bit for the corresponding destination is inspected.
If the bit is set, then the SL that forces the use of the dy-
namic queue (SL4 for a DDBBM implementation with 5
queues (VLO through VL4)) is selected. If not, then lower
bits of the destination (modulo mapping) indicate the SL.
In our example, the lower two bits. Notice that the selec-
tion may be implemented in the subnet manager located on
every channel adapter in InfiniBand.

Finally, we need to implement the detection mechanism
at the end nodes and the notification of congestion. Regard-

ing the detection mechanism, it must be implemented at the
network interfaces. Again, at the end nodes we may rely on
the subnet manager in order to keep the statistics of traffic
and to issue notification packets to the end nodes. For noti-
fications we can use the VL15. This virtual lane is reserved
for control packets in InfiniBand.

5 Performance Evaluation

In this section we will evaluate the DDBBM strategy.
For this purpose we have developed a detailed event-driven
simulator that allows us to model the network at the register
transfer level. Firstly, we will describe the main simulation
parameters and the modeling considerations we have used
in all the evaluations. Secondly, we will present and analyze
the evaluation results.

5.1 Simulation Model

The simulator models an ICTN with switches, end
nodes, and links. Buffers up to 1KB are modeled for both
the input and the output ports of every switch. The buffer
capacity is statically divided by the number of queues de-
fined by each of the evaluated mapping schemes, resulting
in a fixed size per queue.

At every switch packets are forwarded from any input
queue to any output queue through a multiplexed cross-
bar. We have considered a crossbar bandwidth of 1.5 GB/s
(speedup of 1.5 when compared to link bandwidth). The
crosshar is controlled by a scheduler that receives requests
from the packets at the head of any input queue. A request-
ing packet is forwarded only if the corresponding crossbar
input and crossbar output are free. At each output port a
weighted round-robin arbiter selects the output queue to be
served.

For links we assume serial full-duplex pipelined trans-
missions with 1 GB/s raw bandwidth. The link-level flow
control (LL-FC) protocol is credit-based; a packet can be
transmitted downstream only if a credit is available. When-
ever a packet frees an input buffer location a new credit is
sent to the output port upstream. A similar flow control
scheme has been implemented for the internal switch traver-
sal (input-output packet forwarding). The maximum num-
ber of credits per output (input) port depends on the buffer
size at the next input (output) port and the total number of
queues. The LL-FC packets share the link bandwidth with
data traffic.

The end nodes are connected to switches using Input
Adapters (1As). Every IA is modeled by (i) a fixed num-
ber N of message admittance queues organized in VOQ;
(ii) and a variable number of injection queues organized
similarly to the output ports of a switch. When a new mes-
sage is generated, first it is stored completely in the admit-
tance queue assigned to its destination; then it is segmented
into 64-byte packets before being transferred to an injection

queue. The transfer from admittance queues to injection
queues are controlled by a round-robin arbiter. The trans-
mission of packets from injection queues into the network
is controlled by a weighted round-robin arbiter.

5.2 Topologies and Traffic Patterns

DDBBM will be evaluated in different bidirectional mul-
tistage networks (BMINSs) and 2D/3D meshes. In particu-
lar, 64 x 64, 512 x 512, and 1024 x 1024 BMINs will be
used, each one built using 8-port switches interconnected
in a perfect shuffle connection pattern. The routing algo-
rithm is deterministic. For the regular topologies, 4 x 4,
8 x 8, 16 x 16, 8 x 8 x 4, and 4 x 4 x 4 meshes will be
evaluated. In this case we will use the Dimension Order
Routing (DOR). Evaluated topologies are shown in Table 1,
where cases #XB represent BMINs, and cases #XM repre-
sent meshes.

Traffi cto: random dests hotspot
Network % of injecting % of injecting
Case Evaluated sources (IR) sources (IR)
(end nodes) [destinations]
#1B 64 x 64 (4) 100% (100%) -() [
#2B 64 x 64 (4) 70% (60%0) 30 % (60%) [1]
#3B 64 x 64 (4) 70% (60%0) 30 % (100%) [1]
#4B 64 x 64 (4) 70% (90%) 30 % (60%) [1]
#5B 64 x 64 (4) 70% (60%) 30 % (100%) [5]
#6B 512 x 512 (4) 70% (60%) 30 % (60%) [1
#7B | 1024 x 1024 (4) 70% (60%) 30 % (60%) [1
#1IM 8 x 8(1) 100% (20%) - () [1]
#2M 4% 4 (8) 100% (20%) -OT1
#3M 8 x 8 (1) 70% (20%) 30% (100%) [1]
#AM 8 x 8 x4 (1) 70% (20%) 30% (100%) [1]
#5M 4x4(4) 70% (20%) 30% (100%) [1]
#6M 16 x 16 (1) 70% (20%) 30% (100%) [1]
#IM 8 X 8 (4) 70% (20%) 30% (100%) [1]
#3M 4 x 4 (16) 70% (5%) 30% (100%) [1]
#OM 4 x4 x4(4) 70% (20%) 30% (100%) [1]

Table 1. Topologies and traffic patterns. IR
means Injection Rate per end node.

For the BMIN networks we have defined 7 different syn-
thetic traffic patterns (shown in Table 1). In #1B case all
the sources inject at full injection rate (100%) with a uni-
form distribution of packet destinations. Cases #2B-#7B
introduce at least a congestion tree by oversubscribing a
hotspotted end node: 30% of sources injecting to the same
randomly selected hotspot destination. The rest of traffic
(background traffic) is made of the remaining sources (70%)
injecting traffic to randomly-selected destinations. Cases
#2B through #7B differentiate by the injection rates of end
nodes and the number of hotspots. As the background traffic
shares links and queues with the flows belonging to the con-
gestion tree, substantial HoL blocking will be introduced in
multiple switches.

On the other hand, in regular networks we have defined
9 different scenarios based on synthetic traffic patterns (see
Table 1). All the cases cause a congestion tree by oversub-
scribing the hotspotted end node. In this case, the back-
ground traffic is made of 70% of the sources injecting to
randomly selected destinations, while the remaining 30% of
sources injecting to a common randomly-selected hotspot
destination.

We will analyze the behavior of DDBBM with different
number of queues. For comparison purposes we will also
evaluate the VOQet, VOQsy, and the DBBM mapping
policies. For DBBM we will also use different number of
queues.

5.3 Evaluation Results

5.3.1 DDBBM Sensitivity to Thresholds

In order to evaluate the robustness of DDBBM to DT, LT,
and SIT parameters, cases #1B, #3B, #2M and #5M have
been evaluated with the following values: DT 0.8 and 0.95,
LT 0.2and 0.4, SIT 0 and 6. For all the cases, the N S pa-
rameter has been set to one. The DT and LT parameters are
expressed as percentages of the maximum reception rate.
However, the SIT parameter is expressed as the number of
times the source exceeds the injection rate of 100/N where
N is the number of end nodes. For instance, SIT = 6
means that the destination must receive (600/N)% of the
total received traffic from a particular source to decide that
this source is contributing to the congestion. A value of zero
means that the SIT parameter is disabled.

3

N
o

8

n
o

'DBBM-4Q’ ——

'VOQ_Net' —x—
'VOQ SW' —o—

=
o

Network throughput (bytes per nanosecond)

1le+06 2e+06 3e+06 4e+06 5e+06 6e+06
Nanoseconds

Figure 3. Accepted traffic. #1B case. DT =
0.95,LT=0.2,SIT=0.

Figure 3 shows results for the #1B case with DT = 0.95,
LT = 0.2, and SIT = 0. In this case, all the evalu-
ated mapping schemes except DDBBM achieve the max-
imum throughput. In this case, as the SIT parameter is
disabled, most of the end nodes detect congestion (although
uniform traffic is being used). All the end nodes receiving
at a rate higher than 95% of their link bandwidth will be
considered as a hotspotted end node, being false positives.

After notifying sources, all the injected packets are mapped
to the dynamic queue thus introducing massive HoL block-
ing. Therefore, DDBBM exhibits poor performance levels.
We have analyzed topology/traffic case #1B with increasing
values of SIT. Results show that as we increase the value
of SIT, DDBBM performance increases. Concretely, when
SIT is setto 6, DDBBM achieves the same performance as
VOQ,e:, as the false positives detected by end nodes are
filtered. Figure 4 shows results for topology/traffic case #1B
with SIT=6.

3

&

n
(=}

'DBBM-4Q ——

'VOQ_Net' —«—
VOQ SW =

Network throughput (bytes per nanosecond)
=
5 8

1et06 2e+06 3e+06 4et+06 5e+06 6e+06
Nanoseconds

Figure 4. Accepted traffic. #1B case. DT =
0.95, LT = 0.2, SIT=6.

We have analyzed all the combinations for DT, LT, and
SIT thresholds. The obtained results (not shown) are simi-
lar for the presented case, showing that DT" and LT thresh-
olds have low impact on network performance. The same
evaluation has been performed with topology/traffic cases
#3B, #2M and #5M (not shown). Again, no significant dif-
ferences were encountered. Therefore, we conclude that
the DDBBM mechanism is largely insensitive to DT", and
LT parameters. Only with high injection rates with uni-
form traffic there exists a dependence on the ST parame-
ter. Based on these results, in the following evaluations we
will fix the parameters to the following values: D7'=0.95,
LT=0.2,and SIT=6.

5.3.2 Fairnessof DDBBM

In this Section we will analyze the unfairness introduced
by the different mapping policies. From previous works
we know that DBBM introduces certain levels of unfairness
to some destinations. This is because DBBM maps differ-
ent flows to the same queue, and thus HoL blocking is not
eliminated completely. Notice that this problem is the main
motivation for designing DDBBM.

In Figure 5 we can see the traffic received by each end
node for topology/traffic case #3B (64 x 64 BMIN) when
VOQunet, VOQ s, DBBM-4Q and DDBBM-5Q schemes
are used. The end node with the highest traffic recep-
tion rate corresponds to the hotspot (end node 30), which
reaches 90% of reception rate (axes are truncated at 50%).

0,57 f VOQ_Net (traffic #3B)
S oamulgannnnninanennnanaanennannalionninnanfiniandangdneinnneanainnn
0,31
0,24

6)

Throughput

0,57 M DBBM-4Q (traffic #3B)

0,31l
0,21
0,14

Throughput (%)

Throughput (%)

IA Destination

0,57 il DBBM-16Q (traffic #7B)

5
< 0,14
=

0

|A Destination

0,57 n VOQ_SW (traffic #3B)

IA Destination

|A Destination

‘ IA‘[‘)estin‘ation

_ 059~ . . o DDBBM-170 (traffic #7B)
3 0,31

<

o

< 0,14

[

0

|A Destination

Figure 5. BMIN Accepted traffic per destination.

With VOQ,.; every destination, except the hotspot, re-
ceives roughly the same goodput. However, with VOQ .,
all the flows that share any queue along their path with the
congested flow suffer from HoL blocking. The bar graph
of VOQ, in Figure 5 shows that every 4 consecutive end
nodes similar percentages of accepted traffic are obtained.
This pattern is consequence of the number of links from
a switch connecting the next stage (4) together with the
routing algorithm applied. The routing algorithm will de-
termine the output link for each packet and consequently
which packets will be mapped to the same queue as the
packets addressed to the congested destination. Hence the
reduction in the number of received packets by the victim-
ized destinations. With DBBM (DBBM-4Q bar graph in
Figure 5) the number of affected flows depends on the num-
ber of queues, but neither on routing nor the number of links
per switch.

Notice that in VOQ ., none of the end nodes is receiving
the expected traffic (0.4%), thus all of them experience HoL
blocking. However, DDBBM-5Q completely eliminates the
HoL blocking, and hence the unfairness. The DDBBM-5Q
bar graph in Figure 5 shows that the traffic received by each
end node is roughly the same. Therefore, the HoL block-
ing experienced by DBBM has been completely eliminated
by DDBBM. Thus, the detection mechanism has identified
correctly the congested destination (end node 30) and the
packets addressed to the congested destination have been
mapped to the dynamic queue.

Bar graphs of DBBM-8Q/16Q and DDBBM-9Q/17Q in
Figures 5 show similar results with topology/traffic cases
#6B and #7B. In these cases, the mechanism is much more
stressed as the network is larger (512 x 512 and 1024 x 1024
BMIN networks). However, only in case #7B (1024 x 1024
BMIN) DDBBM shows some kind of unfairness. This is be-
cause although congestion tree is isolated, the reduced hum-
ber of queues applying DDBBM scheme respect to the total
number of end nodes will introduce a slight HoL blocking
among the non congested flows.

Fairness has been also analyzed in 2D/3D meshes. In
this case, similar results have been obtained. Figure 6
shows received traffic for each destination over the dif-
ferent mapping schemes (VOQ@et, VOQs,, DBBM, and
DDBBM, respectively) for topology/traffic cases #5M (4 x 4
mesh with 64 end nodes), and #8M (4 x 4 mesh with 256
end nodes). In all the analyzed cases (cases #5M, #7M
(not shown), #8M, and #9M (not shown)) DDBBM suc-
cessfully eliminates all the unfairness that would be intro-
duced by the congested destination. This behavior confirms
that DDBBM does not present unfairness regardless of the
topology and network size.

To conclude, results show that only when packets ad-
dressed to the congested destination are isolated in a queue,
unfairness is eliminated. Excepting VOQ@ . and DDBBM
schemes, all the other schemes introduce some degree
of unfairness under high load and congestion. However,
DDBBM with a very low number of queues eliminates un-

0,57 i VOQ_Net (traffic #5M)
£ 0,44
0,31
0,21

g TR

6)

Throughput

0,57 0 DBBM-4Q (traffic #5M)
0,41
0,37
0,2

ghput (%)

Throu
o
(=T

—
—]
—

—
—]
—]
—

—
—
—
—

—
—]
—
=

—
—]
—
—

=
—
—
—

—
=
—
—

—
—
—
—
—
—]
=

—-
—
—]
—

=
—]
—
—

—
=
—]
—

—
—
=]
—

—-
—
—
=

I—-
I—
—
—

==
—]
—
—

—_—

|A Destination

057 DBBM-8Q (traffic #8M)
X 0,4
2 0,3
S 0,2/
201/
- o MNAN. AR ANN AN AR A A A e DA AR AN A AR AR AL RAR 1

|A Destination

0,57 n VOQ_SW (traffic #5M)
< 0,44
0,34
0,21

o [e A

|A Destination

6)

Throughput

R

IA Destination
f DDBBM-9Q (traffic #8M)

o o009
[R

e L

Throughput (%)

LRI nannnnnnnnnnnnepnnpnEnAnnanan0nannnnnnnRRnRRRRfnInnaen
|A Destination

Figure 6. Mesh Accepted traffic per destination.

fairness completely.

5.3.3 Throughput Analysis

Finally we evaluate DDBBM in terms of achieved network
throughput. Figure 7 shows the throughput achieved for
BMIN cases (#2B, #3B, #4B, and #5B).

[l DBBM-4Q
[[] DDBBM-5Q

o

&

] NI

>

<C

=1 VOQ_Net
o

2 B voQ_sw
=)

>

°

<

i

'—

case case case case
#2B #3B #4B #5B

Figure 7. Throughput for BMIN cases.

For case #2B we can observe that DDBBM-5Q achieves
the maximum throughput whereas DBBM-4Q and VOQ@ 5.,
show lower throughput numbers. VOQ,,, achieves 70%
of the DDBBM throughput while DBBM-4Q achieves
92%. Similarly, for topology/traffic cases #3B and #4B,
DDBBM-4Q performs equal than VOQ@,¢, and DBBM-
4Q achieves 88% and 89% of DDBBM throughput, respec-
tively, whereas VOQ@s,, only achieves 59% and 61% of
DDBBM throughput. Finally, in case #5B, where 5 lower
intense congestion trees are formed, all of the evaluated
mapping schemes achieve the maximum throughput. As a

summary, DDBBM-5Q achieves VOQ...; throughputin all
the hot spot evaluated cases.

37,5
35 H
32,5
30
o 27,5
>
s 25
2 225
< 20
EP.] VOQ_Net
s " 5 voQ_sw
> 15 I DBBMH4Q
° 125 [[] DDBBM-5Q
=
= 10 = =
7.5
5
2,5
0 T T T
cases case case case
#1M & #3M #4M #6M

#2M

Figure 8. Throughput for mesh cases.

For 2D meshes, Figure 8 shows the throughput achieved
for topology/traffic cases #1M, #2M, #3M, #4M, and #6M.
We see that topology/traffic cases #1M and #2M show equal
characteristics. All the mapping schemes achieves the max-
imum performance. This is because the network is able to
absorb the injected traffic at the rate that is injected (not
hotspotted end node appears). However, when a conges-
tion tree is formed, as in cases #3M, #4M, and #6M, re-
sults show that only DDBBM is able to achieve VOQ@ ¢
throughput. Likewise, we see that although DBBM is not
able to reach VOQ@,,.; throughput, it shows better perfor-
mance than VOQs,, as this method perform the worst in
all the cases. Notice that this behavior keeps despite the
increase in the number of end nodes (cases #4M and #6M).

These results confirm previous conclusions from BMIN
networks: regardless of the topology DDBBM is able to
reach maximum performance while using a reduced set of
queues.

It has to be noted that we also evaluated the DDBBM
mechanism with real traffic (extracted from IP and SAN
traces). In all the cases, the DDBBM mechanism achieved
maximum performance (the one achieved by VOQ) with
very low queue requirements, and completely eliminating
the unfairness introduced by DBBM.

6 Conclusions

In this paper we have proposed a mechanism able to dy-
namically eliminate the HoL blocking caused by congested
end nodes. This is achieved by designing a detection mech-
anism at the end nodes and then notifying sources in order
to separate the congested traffic. The mechanism has been
designed in order to simplify the switch design. Therefore,
it allows its use on commercial products. In this sense, we
have presented a method to apply DDBBM in InfiniBand
without hardware modification.

The results presented clearly demonstrate that the pro-
posed scheme, DDBBM, achieves similar performance than
VOQ..: sScheme but with much fewer resources, and better
performance than the other analyzed schemes (DBBM and
VOQsw). These good results are in terms of throughputand
fairness, under a wide range of traffic patterns and topolo-
gies. Also, DDBBM sensitivity to threshold values has been
evaluated. Results have shown that only under high uniform
traffic and BMIN topologies there exists a dependence on
the SIT parameter. However, with a fine tuning of the pa-
rameter, the adverse case is solved. Also, detection thresh-
olds (DT and LT) are highly insensitive to DDBBM final
performance.

As future work we plan to implement the DDBBM
mechanism on a real system. For this, we plan to imple-
ment the mechanism on InfiniBand and to use real Infini-
Band platforms for its test.

References

[1] G. S. Almasi and A. Gottlieb, "Highly parallel com-
puting,” Ed. Benjamin-Cummings Publishing Co., Inc.,
1994.

[2] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, "High

Speed Switch scheduling for local area networks,” in

ACM Trans. Computer Systems, Nov. 1993.

[3] E. Baydal and P. Lopez, "A Robust Mechanism for

Congestion Control: INC,” in Proc. 9th International

Euro-Par Conference, pp. 958-968, Aug. 2003.

[4] R. Bianchini, T. J. LeBlanc, L. I. Kontothanassis, and

M. E. Crovella, "Alleviating Memory Contention in

Matrix Computations on Large-Scale Shared-Memory

Multiprocessors,” Tech. report 449, Computer Science

Dept., Rochester University, April 1993.

10

[5] IBM BG/L Team, ”An Overview of BlueGene/L Super-
computer,” in High Performance Networking and Com-
puting (SC2002), Nov. 2002.

[6] N.J. Boden et al, "Myrinet - A gigabit per second local
area network,” in IEEE Micro, Feb. 1995.

[7] T. Nachiondo, J. Flich, and J. Duato, "Efficient Reduc-
tion of HOL blocking in Multistage Networks,” in Proc.
2005 Int. Parallel and Distributed Processing Sympo-
sium, April 2005.

W. J. Dally and H. Aoki, ”Deadlock-Free Adaptive
Routing in Multicomputer Networks Using Virtual
Channels,” in IEEE Trans. on Par. and Distr. Systems,
vol. 4, no. 4, April 1993.

[8]

Earth Simulator Center.
esc/eng/index.html.

[10] J. Duato, J. Flich, and T. Nachiondo, ”Cost-Effective
Technique to Reduce HOL-blocking in Single-Stage
and Multistage Switch Fabrics,” in Proc. Euromicro
Conf. on Par., Distr. and Network-based Processing,
Feb. 2004.

[11] T. Nachiondo, J. Flich, J. Duato, and M. Gusat,
”Cost/Performance Trade-offs and Fairness Evaluation
of Queue Mapping Policies,” in Proc. International
Euro-Par Conference, Lisbon, Aug. 2005.

[12] J. Duato, I. Johnson, J. Flich, F. Naven, P. Garcia,
and T. Nachiondo, ”A New Scalable and Cost-Effective
Congestion Management Strategy for Lossless Mul-
tistage Interconnection Networks,” in Int. Symp. on
High-Performance Comp. Arch., Feb. 2005.

[13] InfiniBand Trade Association, ”InfiniBand Architec-
ture. Specification Volume 1. Release 1.0,” Available at
http://www.infinibandta.com/.

[9]

http://www.es.jamstec.go.jp/

[14] N. McKeown, ”Scheduling algorithms for input-
queued cell switches,” Ph.D. Thesis, University of Cal-
ifornia at Berkeley, 1995.

[15] ”Advanced Switching for the PCI Express Architec-
ture,” White paper.

[16] S. L. Scott, and G. S. Sohi, "The Use of Feedback in
Multiprocessors and Its Application to Tree Saturation
Control,” in IEEE Trans. on Parallel Distr. Systems, vol.
1, no. 4, Oct. 1990.

[17] M. Thottethodi, A. R. Lebeck, and S. S. Mukher-
jee, ”Self-Tuned Congestion Control for Multiproces-
sor Networks,” in Proc. Int. Symp. High-Performance
Computer Architecture, Feb. 2001.

[18] P. Yew, N. Tzeng, and D. H. Lawrie, "Distributing
Hot-Spot Addressing in Large-Scale Multiprocessors,”
in IEEE Trans. Computers, vol. 36, no. 4, April 1987.

