RECN-IQ: A Cost-Effective Input-Queued Switch Architecture with Congestion
Management”

Gaspar Moraf
iDept. of Computer Engineering

Universidad Politécnica de Valencia, Spain

{gmora, jflich, jduato}egap.upv.es

Abstract

As the number of computing and storage nodes keeps in-
creasing, the interconnection network is becoming a key
element of many computing and communication systems,
where the overall performance directly depends on network
performance. This performance may dramatically drop
during congestion situations. Although congestion may be
avoided by overdimensioning the network, the current trend
is to reduce overall cost and power consumption by reduc-
ing the number of network components. Thus, the network
will be prone to congestion, thereby becoming mandatory
the use of congestion management techniques.

In that sense, the technique known as Regional Explicit
Congestion Notification (RECN) completely eliminates the
Head-of-Line (HOL) blocking produced by congested pack-
ets, turning congestion harmless. However, RECN has been
designed for switches with queues at input and output ports
(CIOQ switches), thus it can not be directly applied to other
types of switches. Additionally, the method RECN uses for
detecting congestion requires several detection queues that
increase the memory requirements and thus switch cost.

Thus, we completely redefine the RECN mechanism in
order to achieve different goals. First, we adapt RECN to
a switch organization with queues only at input ports (1Q
switches). These switches are simpler and cheaper to pro-
duce than CIOQ ones. Second, we propose a new method
for detecting congestion that does not require several detec-
tion queues, thereby reducing RECN memory requirements.

These improvements lead to achieve a cost-effective
switch organization that derive maximum performance even
in the presence of congestion. Also, we present in detail a
realistic switch architecture supporting the new mechanism.

Results demonstrate that the new RECN version in an IQ
switch achieves maximum network performance in all the
analyzed situations. These results have been obtained with
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a reduction factor of data memory requirements of 5 with
respect to the previous RECN mechanism in CIOQ switches.

1. Introduction

High-performance interconnection networks are nowa-
days present in a wide variety of computing and communi-
cation systems: massive parallel processors, local and sys-
tem area networks, clusters of PCs and workstations, IP
routers, and, recently, inside the chips (Networks on Chip).
In such environments, as the number of processing and stor-
age nodes increases, the interconnection network plays a
prominent role in the performance achieved by the whole
system.

One of the main concerns interconnect designers faced
during the last years has been network congestion. Con-
gestion occurs when several flows of packets simultane-
ously and persistently request the access to the same net-
work resources (typically, a switch output port). In these
cases, any packet not granted will block, and will remain
stored! in a queue until its request is attended. This may
cause the appearance of the phenomenon known as Head-
Of-Line (HOL) blocking, that occurs when a packet at the
head of a queue blocks, preventing the rest of packets in
the same queue from advancing, even if they request avail-
able resources. When congested packets block and pro-
duce HOL blocking to non-congested ones (those packets
belonging to flows that do not contribute to congestion),
non-congested flows advance at the same speed as con-
gested flows, thereby severely degrading network perfor-
mance and eventually collapsing the network (the effect is
rapidly spread over the entire network).

Although the negative consequences of congestion have
been always evident, congestion has not been considered a
critical problem until recently, due to several reasons. For

I'We assume lossless networks, where blocked packets are never dis-
carded. Note that most current interconnects (Myrinet 2000, Quadrics,
InfiniBand, Advanced Switching, etc.) are lossless.
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instance, networks were traditionally overdimensioned (us-
ing more network components than strictly needed), and
this leads to a very low link utilization, thereby reducing
contention and congestion probability. Moreover, differ-
ent queue organizations at switches reduce or eliminate the
HOL blocking effect. This is the case of VOQ where a
queue is used per each output port of the switch (VOQ at
the switch level)[2] or per each possible destination end
node (VOQ at the network level)[3]. Also, the traditional
architecture for switches in communication networks used
queues only at their output ports (Output Queuing, OQ
switches), so HOL blocking (at switch level) was eliminated
in this case.

On the one hand, the high cost and power consumption
of current network components discourages to overdimen-
sion the network. In fact, it is more appropriate to use a
lower number of network components for interconnecting
the terminals, thus reducing cost and power consumption.
However, link utilization increases and subsequently con-
gestion probability. On the other hand, the OQ scheme has
become unfeasible because it requires the memories to op-
erate at a much faster speed than the links, and link speed
in current high-speed interconnects is on the order of Gbps.
Thus, most current switches use either queues only at input
ports (Input Queuing, 1Q switches), or queues at both in-
put and output ports (Combined Input and Output Queuing,
CIOQ switches)?. However, IQ and CIOQ switches may be
affected by HOL blocking. In fact, this problem may limit
the throughput of the switch to about 58% of its peak value
[6]. Although VOQ schemes may be used, they become
very expensive as the memory is the component that drives
the final cost of the switch.

Taking all this into account, the use of an efficient con-
gestion management technique is becoming mandatory in
modern interconnects, in order to keep network perfor-
mance at maximum levels while using a reduced number
of network components. Although many techniques have
been proposed in this sense, none of them has been com-
pletely satisfactory until the proposal of Regional Explicit
Congestion Notification (RECN) [4, 5]. RECN focuses on
detecting and eliminating the HOL blocking produced by
congested packets. In order to achieve this, RECN identifies
congested packets and stores them in special, dynamically-
assigned set aside queues (SAQs). RECN completely elim-
inates HOL blocking while requiring a small number of re-
sources (queues) per port. In fact, RECN is the first truly
efficient and scalable HOL blocking elimination technique.

However, RECN has been proposed and designed as-
suming CIOQ switches. This narrows the scope of RECN,
whose application is limited to switches with this type of
switch organization, while IQ switches are currently pre-
ferred since their implementation is usually simpler and

2Although other schemes, like BC (Buffer Crossbar) switches, have
been proposed, they are not so popular.

cheaper. Note that the cost of a switch is mainly driven
by the memory used, and most of the switch power and
area is consumed by the memory. This fact suggests that
switch designs with fewer and smaller memories are prefer-
able, thus the IQ organization being more attractive than
CIOQ. Taking all this into account, one of the novelties we
present in this paper is a new RECN version whose main
aim is to adapt to IQ switches, thereby allowing any switch
model with this organization to get efficient and scalable
congestion management. The new version will be referred
to as RECN-IQ. In this sense, RECN will be compatible
with both CIOQ and IQ architectures, on which most of the
current switches are based.

Additionally, we have reduced the memory requirements
of RECN at the input ports of a switch. Specifically, the
previous RECN version required several detection queues
(one per output port in the switch) in order to detect con-
gestion. In detail, whenever a detection queue fills over
a given threshold, the output port associated to the detec-
tion queue is considered as a congested point. Although
this method works accurately, it is expensive as it increases
the minimum silicon area required at input ports (even if
memory is dynamically managed). In order to avoid all the
aforementioned problems, the new RECN version includes
a new method for detecting congestion at input ports that
requires a single detection queue per input port.

Note that, since the new RECN proposal removes data
memories at output ports and detection queues at input
ports, the power and area required for switches will be sig-
nificantly reduced, thereby allowing us to build cheaper net-
works as switches will have smaller memories. Of course,
this will lead to a reduction in the cost and power consump-
tion of the overall system. For instance, in a 16-port switch,
the previous RECN mechanism would require 256 detec-
tion queues in the switch, whereas the new RECN version
will require only 16 queues (a reduction factor of 16).

Also, in this paper, we propose an efficient and realistic
switch architecture suitable for the new RECN mechanism,
describing in detail the structure and behavior of each func-
tional unit of this architecture. All the memory sizes, sig-
nals and components required for a real implementation are
defined. Note that this is the first time a switch architecture
implementing RECN is described at this level.

Summing up, the main contributions of this proposal are
the following:

o It adapts the RECN strategy to IQ switches, thereby
allowing efficient congestion management in this type
of switches.

e Itis based on a perfectly defined, efficient and feasible
switch architecture that favours a real implementation.

e It requires fewer resources at input ports than former
RECN versions, thereby being an even more cost-
effective technique.
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The rest of the paper is organized as follows. Section 2
describes the basics of the new proposal (RECN-IQ). Next,
in Section 3, the IQ switch architecture with the new RECN-
IQ mechanism is described. In Section 4 the performance
of the new proposal is evaluated. Finally, in Section 5, some
conclusions are drawn.

2. RECN-IQ: Functional Description

In this Section we will describe the new version of
RECN for IQ switches. For this, we will describe the main
modifications introduced in the previous RECN mechanism
[4, 5] (suitable for CIOQ switches).

The switch architecture assumes a routing scheme simi-
lar to the one used in AS interconnects [1]. Thus, it is as-
sumed that each packet includes in its packet header a turn-
pool and a turn pointer. The turnpool is made of 31 bits and
contains a turn (offset from an input port to the requested
output port) for each switch along the packet’s path. The
turn pointer, made of 5 bits, points to the set of bits of the
turnpool encoding the turn for the current switch. Also, the
switch architecture assumes ViCT switching.

For the sake of an easier understanding, the following
subsections describe in detail and separately each different
functional aspect of RECN-IQ: memory management, con-
gestion detection, allocation of queues, processing of pack-
ets, and flow control. Later, when describing the switch
architecture including RECN-IQ, we will implement each
aspect in a separate functional unit.

2.1. Memory Management and Require-
ments

The RECN-IQ mechanism has been designed assuming
data memories only at the input ports of a switch. At each
input port a data memory will be used for allocating a nor-
mal (Cold) queue and a set of SAQs. For controlling the
SAQEs, an associated CAM (Content-Addressable Memory)
will be required at each input port. Additionally, a CAM
structure will be required also at output ports.

In the previous RECN mechanism, some detection
queues were used at each input port. However, in the
RECN-IQ mechanism only a single queue, the Cold Queue
(CQ), will be used for storing all the incoming packets.
Therefore, the new RECN mechanism will require at each
switch fewer memory resources, both at the output ports
(where only the CAM is required) and at the input ports
(where detection queues are replaced by only one queue).

As an example, assuming a detection threshold of 2 slots
(a slot will store one packet) and an Xoff threshold (required
for activating the “stop” function in the flow control be-
tween SAQs) of 2 slots for SAQs, the RECN mechanism
would require N x (2N 4 8) + N x (2 + 8) slots in a
N x N switch with 4 SAQs per port. That is, at each input

port (V) a memory with 2N + 8 slots (/V detection queues
and 4 SAQs) is required, and at each output port (V) a mem-
ory with 2 4 8 slots (1 standard queue and 4 SAQs) is re-
quired. All this sums 800 slots for a 16 x 16 switch. How-
ever, with the RECN-IQ mechanism, in a N x N switch
with 4 SAQs per input port, the memory requirements are
only 10 slots per input port. Since only memories are lo-
cated at input ports, memory requirements are 10N slots.
Thus, for a 16 x 16 switch, RECN-1IQ would require 160
slots. A reduction factor of 5. Notice that these numbers
have been obtained assuming short cables where Round-
Trip-Time (RTT) is lower than a packet/slot.

2.2. Congestion Detection

The new RECN-IQ mechanism detects congestion only
at input ports. In particular, whenever the number of pack-
ets in the CQ queue exceeds a given threshold (the RECN-
congestion threshold), congestion is detected. Once a con-
gested situation is detected, the congested point must be
identified.

The RECN-IQ mechanism assumes that the origin of
congestion is the output port requested by the first packet
at the CQ queue. This assumption is based on the fact that,
in a congestion situation, it is very likely that the first packet
in a congested queue is blocked because it requests a con-
gested output port. Therefore, in these situations, the detec-
tion mechanism will hit the congested output port.

Indeed, in a non-congested situation, the rate at which
packets arrive to a given input port will be same at which
packets leave the input port, thus the queue’s occupancy will
be low. Thus, if the CQ increases in size is because the
packet at the head is blocked.

On the other hand, it may happen that the packet at the
head of the queue is not being addressed to a congested out-
put port. In that situation, the detection mechanism will fail,
but the Post-Processing unit and the deallocation policy of
SAQs will minimize the impact of the false detections (as
explained below).

2.2.1 SAQ Allocation and Deallocation

Once congestion is detected, the input port allocates a new
SAQ for the congested point (output port requested by the
packet at the head of the CQ).

The associated CAM line will include all the routing in-
formation (turnpool + bit mask) and the status (Valid, Xoff,
and SentXoff bits) of the SAQ. An active Valid bit indicates
that the SAQ is assigned to a congestion point; an active
Xoff bit indicates that the SAQ is stopped by the flow con-
trol between SAQs, and an active SentXoff bit indicates that
the SAQ sent an Xoff signal to an upstream SAQ. In this
case, when a new SAQ is allocated, it will set the “Valid”
bit, and will reset the “Xoff”” and “SentXoff” bits. As in
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the previous mechanism, if there exists already in the port
an associated SAQ for the detected congested point, then no
new SAQ will be allocated. Thus, before allocating a new
SAQ, a search in the CAM structure is performed.

Whenever a SAQ empties and is not blocked by the
Xon/Xoff flow control (Xoff bit not set), then the SAQ is
deallocated. So the RECN-IQ mechanism allows the deal-
location of SAQs in a distributed way as it was done in the
previous RECN mechanism.

2.3. Packet Processing

Whenever a new packet arrives to the switch, it is stored
in the CQ queue, regardless whether it will pass through
a detected congested point or not. A mechanism (Post-
Processing mechanism) at each input port will decide later if
the packet goes to any of the different SAQs allocated at this
port. The Post-Processing mechanism cyclically inspects all
the queues (CQ and SAQs), one at a time. At each queue, it
will process the packet at the head of the queue. In particu-
lar, the routing information of that packet will be compared
to the routing information of each CAM line. Thus, it will
be detected whether or not the packet is going through a
congested point in the network. In the case of a match, the
packet will be moved to the corresponding SAQ. Otherwise,
the packet will be set as ready for the switch arbiter. In this
way, congested packets will not be blocked at the head of
the queue, thereby avoiding HOL blocking.

Notice that the routing info of a packet may match at the
same time the routing info of several active CAM lines in
an input port. Thus, different situations may arise depend-
ing on the queue where the packet is initially mapped into.
The first situation occurs when the packet is initially in the
CQ and there are two matches. In order to avoid cycles
among different SAQs when mapping packets, the short-
est match will be selected. Thus, in a first post-processing
step, the packet will be stored in the SAQ with the “less-
specific” (shortest) associated turnpool. In a second situ-
ation, a packet stored in a SAQ matches (when it is post-
processed) two CAM lines, one of them being less-specific
than the one associated to the current SAQ. In that situation,
the post-processing mechanism will select the less-specific
match, but larger than the routing info for the current SAQ.
This is done to preserve in-order delivery of the packets. To
sum up, packets move initially from CQ to one SAQ, then
from that SAQ to another in increasing matching size, until
the packet reaches the SAQ with the largest match. Once
a packet is post-processed and there is no match with any
CAM line, then the packet is set as ready for the arbiter.

2.4. Congestion Information Propagation

The detection of congestion propagates between
switches in the following manner. Whenever the number

of packets on a SAQ exceeds the Xoff RECN Threshold,
then the input port sends backwards an Xoff signal (con-
taining the routing information that points to the associated
congested point) to the corresponding output port at the up-
stream switch. Upon reception, a new CAM line is allocated
at the output port of the switch pointing to the congested
point (if there is not already a SAQ allocated for the noti-
fied congested point). The Valid and Xoff bits are set.
Whenever a packet passes through the output port?, the
routing information is inspected and compared to the rout-
ing information stored in the active CAM lines at this output
port. If there is a match and the matching CAM line has its
Xoff bit set, an internal Xoff notification is sent to the in-
put port that sent the packet. Upon reception of that Xoff
signal, the input port allocates a new SAQ+CAM line, with
routing information pointing to the congested point (note
that the routing information from the output port CAM line
is updated at the input port CAM line for including another
significant turn). The Xoff bit for that newly allocated SAQ
is set. However, if a SAQ already existed for the congested
point, then the Xoff bit of its associated CAM line is set.

2.5. Flow Control

A SAQ with its associated CAM line having the Xoff bit
set cannot send packets through the switch. Whenever the
number of packets on a SAQ goes below the RECN Xon
threshold, an Xon signal is sent backwards to the connected
output port at the upstream switch. Then, the corresponding
CAM line at the output port resets the Xoff bit and broad-
casts an internal Xon signal to all the input ports of the
switch. The input ports with an allocated SAQ for the con-
gested point reset the Xoff bit on the corresponding CAM
line, thus allowing the packets stored in the SAQ to move
forward.

2.6. RECN-IQ: Procedure Example

In order to introduce the basics of RECN-IQ, a graphi-
cal example showing the basic procedure is shown in Fig-
ure 1. Step 1 shows how congestion is detected. The link
connected to output port P5 of Switch 2 is oversubscribed,
therefore packets begin to accumulate on the Cold Queues
(CQs) at several input ports of Switch 2. When the num-
ber of packets stored in the CQ in P2 of Switch 2 exceeds
the RECN-IQ threshold, congestion is detected at the out-
put port requested by the packet at the head of the CQ. Thus,
output port P5 of Switch 2 is considered a congested point
(congested point Z). Then, a new SAQ+CAM line is allo-
cated at P2 of Switch 2, pointing to the detected congested
point (as can be seen in Step 2 of Figure 1). Congested
packets at the head of the CQ in P2 of Switch 2 are moved to

3Notice that queues are not implemented at output ports.
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the SAQ by the Post-Processing (PP) mechanism, so avoid-
ing the HOL blocking these packets may produce. When
the number of packets at the SAQ exceeds the Xoff thresh-
old, an Xoff signal is sent backwards to the upstream output
port (P6 in Switch 1). As shown in Step 3 of Figure 1,
upon reception of the Xoff signal, a new CAM line pointing
to the congested point is activated at P6 in Switch 1. The
contents of this CAM line are copied from the downstream
CAM line. When any input port of Switch 1 sends a packet
through P6, the turnpool of the packet is compared to the
turnpool stored in the CAM line. In the case of a match,
the output port sends an Xoff signal to the input port (in the
example, P1 of Switch 1). Upon reception of such signal,
the input port allocates a new SAQ+CAM line pointing to
the detected congested point Z, as can be seen in Step 4 of
Figure 1. After this, the congested packets at the head of
the CQ in P1 of Switch 1 are moved to the SAQ by the PP
mechanism. If the number of packets at this SAQ exceeds
the Xoff threshold, a Xoff signal would be sent backwards,
and so on.

3. Input Queued Switch Architecture with
RECN-IQ

In the previous Section we have described the new
RECN-IQ mechanism. Of course, this mechanism would

influence many aspects (i.e. memory management, flow
control issues, scheduler) of any switch supporting it.
Therefore, we detail in this Section the entire switch orga-
nization required for implementing the RECN-IQ mecha-
nism.

Figure 2 shows a general overview of the switch archi-
tecture with RECN-IQ, depicting an input port, the crossbar
and an output port. For the sake of an easier understanding,
the switch has been divided into six functional units: Mem-
ory management (MMU), Mapping (MU), Post-Processing
(PPU), Routing (RU), RECN Flow Control (RFCU), and
Congestion Detection (CDU). In order to focus on the
RECN-IQ mechanism and to avoid introducing graphical
complexity, we do not include the arbiter in this Figure. Fur-
ther in this Section we will discuss about the arbiter.

Also, the memory structures required by the mechanism
and the switch architecture are depicted in Figure 2. In ad-
dition to the SRAM memory, an additional memory of 2 Kb
is required at each input port. This memory will store the
routing headers of each packet. Also, two register files will
be required: the Pointer Registers File (PRF) and the Re-
quests Registers File (RRF). The PRF will store the pointers
among different packets, in order to keep the logical struc-
ture of the queues. The RRF will store the requested output
ports of the packets.

Additionally, besides some small registers, for each im-
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Figure 3. MMU (Memory Management Unit) and MU (Mapping Unit) units in detail.

plemented queue (CQ or SAQs) a set of four registers will
be managed to keep the queue structure and to keep track of
the queue occupancy level: head, tail, empty and number-
of-packets registers. Finally, also a CAM structure is re-
quired, but in this case at both ports, input and output.

3.1. Memory Management Unit

In the proposed switch architecture packets are stored
only at input ports. Thus, the Memory Management Unit
(MMU) is located at the input side of the switch. The
MMU is in charge of mapping all the incoming packets to
the corresponding queue and to keep track of the allocated

queues within the memory. Figure 3.(a) shows the scheme
for the MMU. This element works in a Dynamically Allo-
cate Multi-Queue buffer (DAMQ) [7] fashion and it consists
of a SRAM memory of 32 Kbits and an associated logic.
The memory is divided into slots of 64 bytes (64 chunks of
64 bytes each). Slots are used atomically.

Whenever a new packet arrives (Start Of Packet signal,
SOP) the writing logic selects a free slot in the memory for
mapping the packet. In order to do this, the MMU incor-
porates two registers to keep track of the list of free slots,
managed in a LIFO manner. Additionally, in order to keep
track of the different queues implemented in the memory,
the MMU incorporates a list of pointers, one for each pos-
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Figure 4. RU (Routing Unit) and CDU (Congestion Detection Unit) units in detail.

sible slot. Thus, it incorporates 64 registers. Each register
corresponds to a slot and indicates which is the next slot in
the queue’s order.

3.2. Mapping Unit

As already explained, in the RECN-IQ mechanism, the
memory of each input port is logically divided into a sin-
gle (Cold) queue, and a set of SAQs for storing congested
packets. In the proposed architecture, we assume four SAQs
per set (this number of SAQs is enough for handling effec-
tively congestion situations, as it will be demonstrated in the
evaluation section). SAQs are dynamically allocated when
required. Whenever a new packet arrives to an input port, it
is stored always in the CQ queue. To keep track of the CQ,
the Mapping Unit (MU) is used.

Figure 3.(b) shows the scheme for the MU. It consists of
four registers and an associated logic. The logic places the
incoming packet in the CQ and updates the registers. The
Head and Tail registers keep track of the structure of the
CQ whereas the remaining two registers keep track of the
queue’s occupancy.

3.3. Routing Unit

At the same time packets are being stored into the CQ,
the switch routes the packet in order to decide which output
port the packet requests. For this, the Routing Unit (RU)
shown in Figure 4.(a) places the packet header in a sepa-
rate SRAM memory of 2 Kbits. This memory contains the
header of each packet stored in the port, so it is divided into
64 slots. Each slot contains a turnpool and a turnpointer fol-
lowing the AS packet header format. Thus, each slot will be
36 bits wide.

Additionally, the RU will extract from the header of the
incoming packet the output port requested, and will store
that information into the request register file (RRF), made
up of 64 registers 7 bits wide each. The RRF will be in-
spected by the scheduler in order to decide when to forward
the packet through the crossbar. However, one of these bits
(the Ready-For-Scheduler, RFS bit) will be used in order to
enable/disable the forwarding of the packet. This bit will be
switched on by the PPU unit (see below). Anyway, when-
ever a new packet arrives the input port and is routed, the
RFS bit is reset, thus the packet is disabled for being for-
warded. Later, the PPU unit will set this bit, thus enabling
the packet for the scheduler.

3.4. Congestion Detection Unit

The Congestion Detection Unit (CDU) shown in Figure
4.(b) is in charge of detecting congestion, computing the
output port congested, and, if required, allocating a new
SAQ for the congested point. First, it compares the cur-
rent queue’s occupancy of the CQ against a given RECN
threshold (measured in number of packets or slots). If the
threshold is reached, then the congestion detection logic is
triggered. This logic will extract from the Request Regis-
ters File (RRF) the output port requested by the packet at
the header of the CQ. Then, it will build the turnpool and
the bit mask addressing that output port and will compare
this information against all the routing info stored in the
CAM line of each active SAQ. In order to implement these
CAM lines, the CDU incorporates a register for each possi-
ble SAQ. If there is no match, a new SAQ for the congested
output port will be allocated.

Notice that the logic associated to the CDU is enabled
only when the detection threshold is reached. Thus, in the
absence of congestion, most of the logic will be disabled.
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detail.

3.5. Post-Processing Unit

The Post-Processing unit (PPU) shown in Figure 5.(a) is
in charge of separating the congested flows from the non-
congested ones. Also, it will separate every congested flow
from each other.

For keeping the logical structure of SAQs, the PPU re-
quires some registers per SAQ (the same required for the
CQ at the MU unit): Head and Tail registers for keeping
queue structure and two registers to keep queue occupancy
level.

The PPU works as a background task managing stored
packets. Its main purpose is to classify packets according
to the congested points already identified. To do this, the
PPU continuously inspects the routing header (this info is
located at the routing info memory at the RU) of each packet
located at the head of any queue (CQ, SAQO, SAQ1, SAQ2,
and SAQ3). With this info, it checks if there is a match
with any of the identified congested points. If so, the packet
is moved to the SAQ associated to the congested point (it
should be noted that the packet is not moved at all, only the
pointers are updated).

Notice that the PPU may move packets from the cold
queue (CQ) to a SAQ. In this case, the packet has been iden-

tified as passing through the congested point for which the
SAQ has been allocated. The packet is simply moved to the
tail of the SAQ. This is done by just adjusting the pointers of
the CQ and the SAQ. Also, the Pointer Registers File (PRF)
is updated accordingly.

However, note also that a packet stored at the head of a
SAQ can be moved by the PPU unit. In this case, the unit
moves the packet only if there is a match of the turnpool
of the packet with the routing info associated to other SAQ
allocated for a more specific congested point in the network
(with a longer turnpool match).

Whenever a packet gets postprocessed (it is treated by
the PPU unit), the RFS bit of the packet (located at the RRF
file) is written. If the packet is moved (either from the CQ
or from a SAQ) to a new queue, then, the bit is reset. On the
contrary, if the packet is not moved by the PPU unit, then
the RFS bit is set, thus allowing the scheduler to forward
the packet through the crossbar.

3.6. Flow Control Unit

The RECN-IQ mechanism implements Xon/Xoff (Stop
& Go) flow control for the SAQs. As seen in Section 2,
these flow control signals are used as notifications of con-

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:17 from IEEE Xplore. Restrictions apply.

IEE I-'

COMPUTER
SOCIETY



gestion (propagation or vanishing) within the network as
well. The RECN flow control unit (RFCU) is shown in Fig-
ure 5.(b).

Each time a packet is moved to a SAQ by the Post-
processing unit, the RFCU logic is activated in order to
check if the occupancy of the receiving SAQ goes over the
Xoff threshold, and also to check if the occupancy of the
sending SAQ (in the case of packets being moved from a
SAQ) goes below the Xon threshold. Therefore, the RFCU
compares the number of packets of each SAQ against the
Xoff (Xon) threshold. If the SAQ occupancy has crossed
the Xoff (Xon) threshold, and the SentXoff bit is unset (set),
an Xoff (Xon) signal is sent backwards to the output port in
the switch upstream. Then, the SentXoff bit for that SAQ is
set (unset).

3.7. Scheduler and Global Flow Control

Although SAQs are individually flow controlled, the
switch implements also a general (memory level) flow con-
trol mechanism. That is, each input port memory will have
a number of credits available for packets. The number of
credits will be the number of slots available in the mem-
ory, regardless of the receiving queue. Therefore, a packet
will be transmitted over a link if the receiving memory has
an available slot (a credit) and the transmitting queue is not
blocked (in the case the transmitting queue is a SAQ and its
associated CAM has the ”Xoff” bit set). Once a packet is
transmitted the switch decrements the number of available
credits at the downstream memory. Therefore, at each out-
put port the switch implements a counter of the number of
credits available.

Therefore, the scheduler must take the credit counters at
each output port into account when scheduling packets for
transmission. Besides the credit counters, also, the sched-
uler will take into account the RFT bit of each packet and
the Xoff bits of each CAM line associated to an active SAQ.

Regarding the arbiter, the switch architecture presented
up to now is independent of the algorithm used to imple-
ment the arbiter. Anyway, we propose (and evaluate in the
next Section) a round-robin arbiter with two phases. At the
first phase an arbiter at each input port selects a queue with
an available packet for transmission at its head. This arbiter
performs a round-robin selection. At the second phase, an
arbiter at each output port selects, in a round-robin fashion,
one among all the possible requests of all the input ports.

4. RECN-IQ Evaluation

In this section, the RECN-IQ mechanism is evaluated by
means of simulation results. Specifically, we show the net-
work throughput and network latency achieved when the in-
jected traffic is varied. Also, results of switch efficiency as
a function of time are presented. These metrics have been

measured for different values of the maximum number of
SAQs available at input ports. Specifically, we have con-
sidered 2, 4 and 8 SAQs for simulating different RECN-1Q
configurations and also no SAQs for simulating switches
not using RECN-IQ. Two different synthetic traffic patterns
are used: uniform and hot-spot.

Regarding network size and topology, the following two
Multi-stage Interconnection Network (MIN) configurations
have been analyzed:

e Configuration 1: 64 end nodes, MIN made of 8x8
switches (48 switches in 3 stages, perfect shuffle as
interconnection pattern).

e Configuration 2: 256 end nodes, MIN made of 8x8
switches (256 switches in 4 stages, perfect shuffle as
interconnection pattern).

The organization of all the switches in those config-
urations is the one described in Section 3, so they are
1Q switches in which RECN-IQ can be enabled/disabled.
Other common parameters used in all the simulations are:
Input Memories Size=4KB (64 packets); Packet Length=64
bytes;Xon Threshold=5 packets;Xoff Threshold=10 pack-
ets;Congestion Detection Threshold=5 packets.

4.1. Results for Uniform Traffic

For the two MIN configurations considered, throughput
and latency results obtained using uniform traffic and dif-
ferent numbers of SAQs per port can be seen in Figure 6.

In the case of the 64-end node MIN (Figures 6.(a) and
6.(b)), the maximum efficiency for an IQ switch without
RECN-IQ (no SAQs used) is about 65%. When using
RECN-IQ and only 2 SAQs, the efficiency increases to
above 80%. However, as can be seen in the figures, at least 4
SAQs are needed for achieving maximum switch efficiency.

The switch efficiency for the 256-end node MIN is
slightly lower than the one for the 64-end node MIN, un-
less we use RECN-IQ and 8 SAQs. In this case, the switch
efficiency is maximum. When using only 4 SAQs, the ef-
ficiency is above 90%. When using RECN-IQ with only 2
SAQs, switch efficiency can be increased from 65% to al-
most 80% when compared to the case of not using RECN-
1Q (Figure 6.(c)).

4.2. Results for Hot-Spot Traffic

We have also made experiments using a hot-spot traf-
fic pattern. Specifically, in this case all the end nodes inject
10% of their traffic to a single (hot-spot) end node (end node
number 6 in this very case), whereas the rest of the traffic is
randomly distributed among the rest of end nodes. Further-
more, the hot-spot is only injected during a small period of
time at the start of the simulation (first 100,000 cycles).
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Figure 7 depicts switch efficiency versus time for MIN
configurations 1 and 2. As can be seen, when RECN-IQ is
not used (no SAQs used), the switch efficiency drops to un-
aceptable levels during the hot-spot traffic injection. More-
over, in the case of the 256-end node MIN, the congested
situation persists long time after the hot-spot injection ends.

The situation changes dramatically when using RECN-
1Q. Figures 7.(a) and 7.(b) also depict the switch efficiency
when using RECN-IQ with 2, 4 and 8 SAQs. For the 64-end
node MIN, using 4 SAQs is enough for completely elimi-
nate the negative side-effects of congestion, thereby achiev-
ing maximum switch efficiency. Anyway, note that with
only 2 SAQs, 80% of switch efficiency can be achieved.
For larger networks, like the 256-end node MIN, maximum
switch efficiency is guaranteed by using 8 SAQs.

5. Conclusions

For modern interconnection networks, the use of an
effective congestion management technique has become
mandatory in order to keep network performance at max-
imum even in congestion situations. Although the formerly
proposed RECN mechanism efficiently solves the problems
related to congestion, its application is restricted to CIOQ

switches, thereby not being suitable for the IQ switches.

In order to afford an effective congestion management
technique to this type of switches, we have proposed in this
paper an adaptation of RECN to IQ switches. The resulting
mechanism, referred to as RECN-IQ, also introduces a new
way for detecting congestion at input ports that significantly
reduces the data memory area required at each port. From
the evaluation results presented in this paper, we can deduce
that RECN-IQ eliminates HOL blocking as well as RECN,
while being an even more cost-effective technique.

Moreover, a feasible, realistic switch architecture imple-
menting RECN-IQ has been proposed and described in de-
tail in this paper. This architecture could be the base for
switches which would allow to build cheaper networks fea-
turing congestion management.
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