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Abstract

InfiniBand is an interconnect standard for communica-
tion between processing nodes and I/O devices as well
as for interprocessor communication (NOWs). The Infini-
Band Architecture (IBA) defines a switch-based network
with point-to-point links whose topology can be established
by the customer. When the performance is the primary con-
cern regular topologies are preferred. Low-dimensional tori
(2D and 3D) are some of the regular topologies most widely
used in commercial parallel computers. Routing in torus re-
quires the use of virtual channels. Although InfiniBand pro-
vides support for deterministic routing and virtual channels,
they are selected at each switch by service level (SL) iden-
tifiers associated to packets and do not depend on packet
destination. This makes routing algorithm implementation
more complex. In particular, a large number of SLs may be
required, which is a scarce resource. In this paper we an-
alyze the way several routing strategies can be applied in
tori InfiniBand networks, also evaluating their resource re-
quirements. In particular, we analyze and compare the well-
known e-cube and up*/down* routing algorithms and the
Flexible routing algorithm recently proposed.

Keywords: Routing algorithms, InfiniBand networks,
torus topologies, clusters, deadlock avoidance.

1. Introduction

InfiniBand is a new standard for communication devel-
oped by many companies, including the computing industry
leaders [10]. InfiniBand is designed to solve the lack of high
bandwidth, concurrency and reliability of existing technolo-
gies for system area networks. Moreover, InfiniBand can
be used as a platform to build networks of workstations

*This work was supported by the Spanish Ministry of Science and
Technology under grant TIC2000–1151–C07, by Generalitat Valenciana
under Grant CTIDIB/2002/288, and by JJ.CC. de Castilla-La Mancha un-
der Grant PBC-02-008.

(NOWs) and clusters of PCs [16] which have become a
cost-effective alternative to parallel computers. Currently,
clusters are based on different available network technolo-
gies (Fast or Gigabit Ethernet [25], Myrinet [1], ServerNet
II [8], Autonet [24], etc...). However, they may not provide
the protection, isolation, deterministic behavior, and quality
of service required in some environments.

The InfiniBand Architecture (IBA) is designed around a
switch-based interconnect technology with high-speed seri-
al point-to-point links connecting processor nodes and I/O
devices. IBA allows users to decide the network connectiv-
ity. The layout of the network can consist of regular or ir-
regular topologies. Regular topologies are often used when
performance is the primary concern [17]. This is the case
when a large cluster of workstations needs to be designed to
run computation intensive applications. The network would
fit in a single room and the switches would be in a cabi-
net. In particular, most of the commercial parallel comput-
ers have been built using torus topologies with two (2D)
or three (3D) dimensions, such as Intel Cavallino [3], Cray
T3D [11], and Cray T3E [23]. Further, recent proposals,
such as Alpha 21364 [14] and BlueGene/L [9], use 2D and
3D tori, respectively. Thus, in this paper we restrict our at-
tention to these network topologies.

Routing in IBA is distributed, based on forwarding tables
located on each switch which only consider the packet des-
tination ID for routing [10]. IBA routing is deterministic,
since routing tables only store one routing option (output
port) per destination ID. IBA switches support a maximum
of 16 virtual lanes (VL)1. VL15 is exclusively reserved for
subnet management, whereas the remaining VLs are used
for normal traffic. Virtual lanes provide a mean to imple-
ment multiple logical flows over a single physical link [5]
and are provided to support QoS, traffic priorization, and
routing. In order to route packets through a certain virtual
lane, packets are marked with a certain Service Level (SL),
and SL-to-VL mapping tables are used at each switch to de-

1In what follows, we will use the terms virtual lanes (VL) and virtual
channels (VC) indistinctly.
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termine the virtual lane to be used. However, VL selection
does not only depend on the packet SL, but it also depends
on the input and output physical ports through which the
packet enters and leaves the switch. Thus, once the output
physical port has been provided by the routing table, the
virtual lane is obtained by taking into account both the SL
of the packet and the input and output ports of the current
switch.

Routing in tori can be carried out by using either an spe-
cific routing algorithm for �-ary �-cubes, such as the de-
terministic e-cube algorithm [27], or a generic routing algo-
rithm, such as the well-known up*/down* routing algorithm
[24] or the Flexible routing algorithm [20]. Although, there
are different adaptive routing approaches for tori proposed
in the literature [12, 4, 7], they cannot be applied to Infini-
Band since it only supports deterministic routing.

The e-cube algorithm [27] is especially designed to �-
ary �-cubes and meshes, allowing packets to be routed
through minimal paths. To avoid deadlocks, this algorithm
routes packets in decreasing dimension order. According to
the routing methodology proposed by Dally and Seitz [6],
this algorithm requires two virtual lanes in torus topologies,
which are selected taking into account only the destination
ID. However, InfiniBand considers the SL and the input and
output ports to select the virtual lane. Hence, SLs must be
assigned to packets as a function of their destination, ac-
cording to some strategy (see Section 2). However, a large
number of service levels is required by this routing algo-
rithm to correctly assign virtual lanes in InfiniBand (ana-
lyzed in Section 2). Further, this could seriously restrict the
appliance of QoS.

On the other hand, generic routing algorithms can be
defined on any topology, including torus networks. Gener-
ic routing algorithms require some tool that automatical-
ly explores the network topology and computes the rout-
ing paths. Unlike the e-cube algorithm, these algorithms
support (with an appropriate reconfiguration protocol [2]),
link and switch failures. Additionally, generic routing algo-
rithms can be applied to InfiniBand without requiring the
use of virtual lanes nor service levels. However, these rout-
ing algorithms have the drawback that they do not provide
routing through minimal paths in many cases, specially with
large networks. This is because of the large number of rout-
ing restrictions imposed to avoid deadlocks.

The up*/down* routing algorithm [24] is the most pop-
ular generic routing algorithm currently used in commer-
cial interconnects. This algorithm is quite simple and easy
to implement on any network technology. In [19, 18], a
new methodology to compute up*/down* routing tables was
proposed. This methodology is based on obtaining a depth-
first search spanning tree (DFS) from the network graph in-
stead of the BFS spanning tree used in the original method-
ology [24]. The up*/down* routing scheme based on the

DFS spanning tree significantly outperformed the original
up*/down* scheme, but the behavior of BFS and DFS on
regular networks was noticeably worse than the one exhib-
ited by the specific routing algorithm [6]. More recently, we
proposed the Flexible [20] routing algorithm, that is able to
significantly outperform up*/down* routing in regular net-
works. It only needs one virtual channel and one service
level in order to be used on InfiniBand.

In this paper, we perform a comparative analysis of
different routing algorithms on InfiniBand networks using
torus topologies. In particular, we will consider the e-cube
algorithm, the improved up*/down routing algorithm (using
the methodology based on a DFS spanning tree), and the
Flexible routing algorithm. The main goal of this analysis
is to show which is the most cost-effective routing algo-
rithm in tori when using InfiniBand as the network tech-
nology. For this aim, we will evaluate the performance of
these routing schemes, paying special attention to the net-
work resources required to implement them on InfiniBand
networks.

The rest of the paper is organized as follows. Section 2, 3,
and 4 describe the e-cube algorithm, the up*/down* routing
scheme, and the Flexible routing algorithm, respectively, al-
so dealing with their implementation on IBA. Section 5 an-
alyzes the routing algorithms previously described for tori
by computing some behavioral routing metrics. In section
6, the IBA simulation model is described. It also shows the
performance evaluation results. Finally, some conclusions
are drawn.

2. Applying Dimension-Order Routing in In-
finiBand

In [6], Dally and Seitz extended the well-known e-cube
algorithm [27] for the binary �-cube to the �-ary �-cube
or torus. As known, the e-cube algorithm routes packets
in decreasing dimension order to avoid deadlocks. As stat-
ed in [6], when applied to tori, the e-cube algorithm re-
quires two virtual channels to remove the cyclic channel
dependencies introduced by the wraparound channels. Ad-
ditionally, the use of bidirectional channels allows pack-
ets to be routed through minimal paths. To illustrate how
the e-cube algorithm works in tori, let us assume that
each physical channel is split into two virtual lanes (VL0
and VL1). A packet arriving at a node �� and destined
to node ��, with coordinates2 ����� � ����� � ���� ��� � ���

and ����� � ����� � ���� ��� � ��� , respectively, will be routed
through the physical channel belonging to the dimension �,
where � is the position of the most significant digit in which
addresses �� and �� differ. In each dimension �, packets will

2In a �-ary �-cube network, the address of a node � is formed by �

coordinates (����� ����� ���� ��� ��), where � � �� � � � � for � �
� � �� �.
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Figure 1. Channel dependencies between virtual lanes on a 1�7 torus when applying the e-cube
routing algorithm.
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Figure 2. Conflicts on service levels in a 2D torus. (a) Packet B using wraparound channel in dimen-
sion 0 conflicts with packet A using wraparound channel in dimension 1, and (b) packet C using
wraparound channel in dimension 0 conflicts with packet B using wraparound channels in dimen-
sions 1 and 0.

be routed through VL1 if the ��� digit of the destination ad-
dress is greater than the ��� digit of the current node address.
Otherwise, the packet will be routed through VL0.

As an example, Figure 1 shows the channel dependen-
cies between virtual lanes on a bidirectional torus with 7
nodes when the Dally and Seitz’s routing proposal is used.
As can be seen, the cyclic channel dependency �� � �� �

�� � �� � �� � �� � �� � �� among virtual lane
VL1 is broken at node ��, since packets from nodes ��

destined to nodes �� , so that � � �, are routed through
virtual lane VL0. Moreover, the cyclic channel dependen-
cy �� � �� � �� � �� � �� � �� � �� � ��
among virtual lane VL0 is broken at node ��, since pack-
ets from nodes �� destined to nodes �� , so that � � �, are
routed through virtual lane VL1. Therefore, cyclic channel
dependencies between virtual lanes belonging to the same

dimension are removed and, hence, deadlocks are avoided.
The extension of the e-cube routing algorithm to torus net-
works with more than one dimension is also deadlock-free
as dimensions are crossed always in decreasing order.

When the Dally and Seitz’s routing methodology is be-
ing applied to InfiniBand, it must be taken into account that
virtual lanes cannot be assigned as a function of the destina-
tion node ID. InfiniBand considers the input port, the output
port, and the service level (SL) of the packet to select them.
A possible solution to this problem is to reserve service lev-
els and use them appropriately in order to distinguish differ-
ent routing cases in the e-cube algorithm. To illustrate the
idea, node �� in Figure 1 must distinguish between pack-
ets arrived from node �� destined to node ��, which have to
use VL0, and packets arrived from node �� destined to node
��, which have to use VL1. As can be seen, both packets use

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03) 
0190-3918/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:26 from IEEE Xplore.  Restrictions apply. 



the same input and output port at node ��. Therefore, these
packets must be assigned a different service level (SL) in
order to distinguish them in IBA. An easy criterion to as-
sign SLs to packets could be the following: packets which
use the wraparound channel (e.g. packets from node �� des-
tined to node ��) should use SL1, otherwise they should use
SL0. Moreover, the SLtoVL mapping tables are computed
in such a way that packets with SL� use the appropriate VL
on every switch output port. To sum up, the assignment of
SLs is not made based on the VLs to be used by the pack-
et, but depending on whether the packet has to traverse the
wraparound channel or not. Note that packets that traverse
wraparound channels are forced to make a VL transition.
Therefore, two service levels are needed to correctly distin-
guish virtual lanes for one-dimensional torus according to
the Dally and Seitz’s routing methodology.

However, in tori with larger number of dimensions, a
larger number of service levels is required, as can be ob-
served in Figure 2(a) for a 2D torus. Let us consider two
packets. The first one, �, crosses channels belonging to
dimension 0, and the second, �, crosses from dimension
1 to dimension 0. Both packets (� and �) should be as-
signed SL1 according to the criterion described above, since
they are crossing a wraparound channel. Moreover, at node
����, packet � has to use VL0 whereas packet � has to
use VL1. However, these packets cannot distinguish the VL
to be used as long as they have assigned the same service
level SL1. Therefore, an additional service level is required
in order to distinguish the virtual lanes to be used by these
packets. At first sight, in order to assign service levels to
packets, we can extend the previous criterion to the follow-
ing: use SL0 if no wraparound channel is going to be used
by the packet, use SL1 if one wraparound channel is going
to be used in dimension 1, or use SL2 if, on the contrary, a
wraparound channel is going to be used in dimension 0.

However, three service levels are not enough, as packets
may traverse wraparound channels in both dimensions. To
illustrate this case, let us analyze Figure 2(b). Now, pack-
et B traverses wraparound channels in dimensions 1 and 0,
whereas packets A and C only traverse wraparound chan-
nels in dimensions 1 and 0, respectively. As stated above,
packets A and C should have assigned SL1 and SL2, re-
spectively. If packet B would have been assigned SL2, there
would exist no conflict between packets A and B. However,
there would be a conflict between packets B and C at node
������. This is because the service level of both packets is
the same (SL2) and they must be routed through different
virtual lanes (packet B through VL0 and packet C through
VL1). Therefore, an additional SL is needed. In particu-
lar, packet B should be assigned SL3 because it traverses
wraparound channels in both dimensions.

In summary, in order to apply the e-cube algorithm in
2D tori four service levels are required. Service levels are

Service level Dimension 1 Dimension 0

SL0 no wraparound no wraparound
SL1 wraparound no wraparound
SL2 no wraparound wraparound
SL3 wraparound wraparound

Table 1. Service level assignment based on
the use of the wraparound channel on each
dimension in a 2D torus.

assigned depending on whether packets have to traverse or
not the wraparound channel in each of the dimensions they
cross, as it is illustrated in Table 1. The same reasoning
can be easily generalized to tori with an arbitrary number
of dimensions. The number of service levels required in �-
dimensional tori will be ��. In particular, for 3D tori, 8 ser-
vice levels will be required. This value is very significant as
long as InfiniBand only provides 15 SLs and they are main-
ly intended for QoS. Therefore, in many cases, the number
of available SLs in InfiniBand could not be enough to fulfill
the requirements for deadlock avoidance in torus networks
when using the e-cube routing algorithm.

3. Up*/down* Routing

Up*/down* routing is the most popular routing scheme
currently used in commercial networks, such as Myrinet [1].
Unlike the e-cube algorithm, up*/down* routing is a generic
routing algorithm valid for any network topology.

The up*/down* routing algorithm avoids deadlocks by
restricting routing in such a way that cyclic channel depen-
dencies are avoided. In order to avoid deadlocks while still
allowing all links to be used, up*/down* builds an spanning
tree and assigns a direction (“up” or “down” ) to each output
port based on the spanning tree. To compute the final paths
it uses the following rule: a legal route must traverse zero or
more links in the “up” direction followed by zero or more
links in the “down” direction.

In order to compute the up*/down* routing tables, dif-
ferent methodologies can be applied. These methodologies
differ in the type of spanning tree to be built. The original
methodology is based on BFS spanning trees, as it was pro-
posed in Autonet [24], whereas an alternative methodology
is based on DFS spanning trees [19].

The DFS methodology provides more minimal paths and
a better traffic balance than the BFS one, resulting in a sig-
nificant increase in network performance (both in regular
[20] and irregular [18] networks). Like in the BFS spanning
tree, an initial switch must be chosen as the root before start-
ing the computation of the DFS spanning tree. The selection
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of the root is made by using heuristic rules [18]. In partic-
ular, the root with the highest average topological distance
to the rest of the switches will be selected as the root node.
The rest of switches are added to the DFS spanning tree
following a recursive procedure. Unlike the BFS spanning
tree, adding switches is made by using heuristic rules, as
proposed in [18]. Starting from the root, the switch with the
largest number of links connecting to switches that already
belong to the tree is selected as the next switch in the tree. In
case of tie, the switch with the highest average topological
distance to the rest of the switches will be selected first.

Next, in order to assign direction to links, switches in
the network must be labeled with positive integer numbers.
When assigning directions to links, the “up” end of each
link is defined as the end whose switch has the label with
the highest value.

The up*/down* routing algorithm cannot be applied to
InfiniBand networks in a straightforward manner because
it does not conform to IBA specifications. The reason for
this is the fact that this routing algorithm takes into ac-
count both the input port and the destination ID for routing,
whereas IBA switches only consider the destination ID. We
have proposed two simple and effective strategies to solve
this problem [22, 13]. In [13] routing restrictions are avoid-
ed with the destination renaming technique, which uses the
IBA virtual addressing scheme. Basically, when a switch
provides two different paths for packets destined to the same
host which have arrived at the switch through different input
channels, the destination of one of them is renamed, select-
ing a valid address (not used) from the range assigned to
the destination host. In [22] the problem is solved by oc-
casionally modifying those paths with routing conflicts. In
this paper, we will use the destination renaming technique.
As this technique does not require the use of additional net-
work resources, up*/down* routing can be implemented on
InfiniBand by using one VL and one SL. However, addi-
tional VLs could be used to improve performance [21].

4. Flexible Routing

Like up*/down* routing, the flexible routing algorithm
[20] is a generic routing scheme that avoids deadlock by
breaking cycles in the network graph. However, cycles are
broken at different nodes for each direction in the cycle,
thus providing better traffic balance than that provided by
the up*/down* routing algorithm.

To briefly illustrate this idea, consider the 4-switch net-
work depicted in Figure 3. Solid arrows represent the “up”
direction assigned to each link by the up*/down* rout-
ing algorithm. Also, removed channel dependencies by
up*/down* are shown in dashed arrows. Each routing path
crossing a channel is represented by ��� ��, where � and �

represent the source and destination switches of the routing

b dca
[b,d] [b,d]

[a,c][a,d]

[d,a]
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[c,a][b,a]

[b,c]

[c,b][d,b]
[c,a]

[c,d]

[d,b][d,c]
[a,c]

"up" direction

Figure 3. Link direction assignment and
cyclic channel dependencies removed by us-
ing the up�/down� routing scheme.
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Figure 4. Independently removing cyclic
channel dependencies for each direction of
the cycle and balancing traffic.

path, respectively. Every routing path is computed by select-
ing a single path between every pair of switches, minimiz-
ing the number of routing paths crossing each channel. We
can observe that the up*/down* routing algorithm uneven-
ly distributes the routing paths among channels, since there
are some channels crossed by three routing paths, whereas
other channels are crossed by one routing path.

A better traffic balance may be obtained if instead of
breaking cyclic channel dependencies at the same point for
each direction, they are broken at different points. This is
the case of the Flexible routing algorithm. In Figure 4, we
can observe that the number of dependencies removed from
the network is the same as the one removed in Figure 3.
However, the routing restrictions are independently placed
for each direction of the cycle. We can observe that, with
this approach, the maximum number of routing paths cross-
ing every channel decreases down to �. Moreover, the Flex-
ible routing scheme may apply new routing restrictions to
the network in addition to those imposed to remove cyclic
dependencies. This allows to achieve, in a direct manner
(i.e. without applying a traffic balancing algorithm), a bet-
ter traffic distribution, avoiding disconnecting the network.
For example, in Figure 5, we achieve the same traffic bal-
ance as in Figure 4 but without requiring the use of a traffic
balancing algorithm.

The Flexible routing scheme is based on computing a
DFS spanning tree on the network graph, which provides a
suitable underlying graph to detect cycles. Then, the Flex-
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Figure 5. Balancing paths by removing addi-
tional channel dependencies with Flexible.

ible routing applies some rules to remove channel depen-
dencies in order to guarantee deadlock freedom. See [20]
for further details.

Like the up*/down* routing algorithm, the Flexible rout-
ing cannot be applied in a straightforward manner to Infini-
Band due to the fact that this routing algorithm also takes
into account the input port and the destination ID to route
packets. Therefore, we will also use the destination renam-
ing technique to implement the Flexible routing on Infini-
Band. Like up*/down* routing, the Flexible routing algo-
rithm only requires a single VL and SL to be applied on
InfiniBand. Also, additional VLs could be used to improve
performance [21].

5. Comparing Routing Algorithms

In this section, we analyze and quantify the benefits of
using the routing algorithms described above in 2D and 3D
tori. Since IBA routing is deterministic, a single path has to
be selected for each source-destination pair among all the
available ones. We will select this path by using the traf-
fic balancing algorithm proposed in [18]. The analysis is
performed by comparing some behavioral routing metrics:
(1) The average distance metric, which is the average num-
ber of crossed links in the shortest path between any pair of
nodes3; (2) the crossing path metric, which shows the maxi-
mum number of routing paths crossing through any network
channel; and (3) the deviation crossing metric, which refers
to the standard deviation of the crossing path metric.

Table 2 shows the values of these behavioral routing met-
rics computed for each routing algorithm for 2D torus net-
works with sizes of 4�4, 6�6, and 8�8 switches, and 3D
tori with sizes of 3�3�3 and 4�4�4 switches. These net-
work configurations provide up to 64 switches in the net-
work, which seems adequate in small and medium scale
clusters or NOWs. As can be seen, the Flexible and the
up*/down* routing algorithms cannot guarantee routing
through minimal paths for large 2D tori (6�6 and 8�8

3When paths are computed by assuming that there are no routing re-
strictions, then, the average distance is called average topological distance.

Average
Distances

Crossing
path

Deviation
Crossing

4�4 torus (average topological distance = 2.13)

UD
�

DFS 2.13 12 2.77
FX 2.13 8 0.00

e-cube 2.13 10 0.75

6�6 torus (average topological distance = 3.08)

UD
�

DFS 3.31 56 13.60
FX 3.31 43 10.55

e-cube 3.08 30 1.35

8�8 torus (average topological distance = 4.06)

UD
�

DFS 4.57 209 43.30
FX 4.57 106 28.50

e-cube 4.06 70 2.19

3�3�3 torus (average topological distance = 2.07)

UD
�

DFS 2.07 15 2.81
FX 2.07 9 0

e-cube 2.07 9 0

4�4�4 torus (average topological distance = 3.04)

UD
�

DFS 3.04 75 14.53
FX 3.04 32 0

e-cube 3.04 48 8.89

Table 2. Comparing the Up*/down* routing
algorithm based on the DFS methodology
(UD

�

DFS), the Flexible routing (FX), and the
e-cube algorithm for 2D and 3D tori.

switches). However, the e-cube algorithm provides minimal
paths for all destinations and for all network sizes.

Concerning traffic balance, the e-cube routing algorithm
achieves the lowest value of the crossing path and the de-
viation crossing metrics when the topology radix is high.
This is the case of the 6 � 6 and 8 � 8 tori. On the other
hand, for low radix networks, the Flexible routing scheme
provides the best traffic balance, because the value of the
deviation crossing metric is equal to zero, which means that
all the channels are uniformly balanced. This is due to the
fact that this routing scheme performs a perfect traffic bal-
ance on 4-node cycles [20].

6. Performance Evaluation

In this section, we evaluate by simulation the perfor-
mance of the improved up*/down* routing algorithm based
on the DFS methodology (UD

�

DFS), the Flexible routing
(FX), and the e-cube algorithm for 2D and 3D tori. In par-
ticular, we have considered the same network topologies an-
alyzed in the previous section.

For the e-cube algorithm, we have considered 2VL/4SL
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for 2D tori and 2VL/8SL for 3D tori. Moreover, for the
up*/down* and Flexible routing algorithms, we have con-
sidered 1VL/1SL (referred to as DFS

�

1VL and FX
�

1VL,
respectively) and, for comparison purposes, also 2VL/2SL
(referred to as DFS

�

2VL and FX
�

2VL, respectively).
The evaluation will be performed by using a simulator

that models an InfiniBand network at the register transfer
level, taking into account the timing parameters from Infini-
Band switches in order to obtain realistic simulation results.

In all the presented results, we will plot the average pack-
et latency4 measured in nanoseconds versus the average ac-
cepted traffic5 measured in bytes/ns/switch. It must be no-
ticed that both measures are dependent variables on inject-
ed traffic. This is a compact way of presenting the results.
However, it has the drawback that sometimes two different
values of latency correspond to the same accepted traffic
rate. The explanation is that both of them actually corre-
spond to different traffic injection rates (the lowest injection
rate corresponds to the one that obtains the lowest latency
and vice versa).

First, we will describe the main InfiniBand network
model features defined by the specs together with the main
simulator parameters. Then, we will show the simulation
results.

6.1. The InfiniBand Network Model

The network is composed of a set of switches and hosts,
all of them interconnected by a single link. The evaluated
2D torus network uses 8-port switches, with 4 ports used
to connect to hosts and leaving 4 ports to connect to other
switches. For 3D torus, 10-port switches are considered, al-
so using 4 ports to connect to hosts and leaving the rest of
the ports to connect to other switches.

Packets are routed at each switch by accessing the for-
warding table. This table contains the output port to be used
at the switch for each possible destination. If there is suffi-
cient buffer capacity in the output buffer, the packet is for-
warded. Otherwise, the packet must wait at the input buffer.
Buffer size will be fixed in both cases to 2KB.

In the simulator, each switch will have a crossbar con-
necting the input ports to the output ports, allowing multiple
packets to be transmitted simultaneously without interfer-
ence. Each output port has a separate arbiter that will select
the next packet to be transmitted from the set of packets re-
questing the output port. The delay of the crossbar will be
set accordingly to the value of the injection rate of the links.
Switches can support up to a maximum of 15 virtual lanes
(VL). Each VL provides separate guaranteed buffering re-

4Latency is the elapsed time between the generation of a packet at the
source host until it is delivered at the destination end-node.

5Accepted traffic is the amount of information delivered by the network
per time unit.

sources. service level network. The SL identifier with the
input port the output port has a separate VL round-robin ar-
biter that selects the next VL that contains a packet to be
transmitted over the physical output link.

The routing time at each switch will be set to 100 ns.
Links in InfiniBand are serial. In the simulator, the link in-
jection rate will be fixed to the 1X configuration (2.5 Gbps)
[10]. Therefore, a bit can be injected every 0.4 ns. With 8/10
coding [10] a new byte can be injected into the link every 4
ns. Also, the fly time6 will be set to 100 ns, that corresponds
to 20 m copper cable length with a propagation delay of 5
ns/m.

According to IBA specification, we use the virtual cut-
through switching technique and a credit-based flow control
scheme for each virtual lane.

We will use two different packet lengths in all the eval-
uations. We will use short packets with 32 bytes and long
packets with 512 bytes. Also, we have considered different
synthetic traffic patterns in order to analyze their influence
on system performance. In particular, uniform, bit-reversal,
and matrix transpose packet destination distributions will be
considered.

6.2. Simulation Results

Figure 6 shows the simulation results for 2D tori of 4�4,
6�6, and 8�8 switches, when packet length is 512-bytes
and uniform packet distribution is used. As can be seen, the
Flexible routing algorithm significantly improves the per-
formance with respect to other routing algorithms evaluat-
ed for 4�4 tori. Moreover, despite using only one virtual
lane, performance improvement is noticeable. In particu-
lar, FX

�

1VL/SL increases throughput by 11 % and 20 %
with respect to e-cube and DFS

�

2VL/SL, respectively. In
addition, performance of the Flexible algorithm increases
by 16 % when using two virtual lanes (FX

�

2VL/SL). As it
was analyzed in Section 5, the reason for this improvement
must be found in its ability to better balance network traffic.

When network size increases, the e-cube algorithm
achieves a higher throughput than the Flexible routing al-
gorithm. In particular, it achieves a throughput 25 % higher
than FX

�

1VL/SL in a 8�8 torus. However, remember that
the e-cube algorithm has to use 4 service levels and 2 virtu-
al channels. On the other hand, the differences in through-
put improvement with respect FX

�

2VL/SL is reduced to a
10 %.

Also, we can observe that the e-cube algorithm reduces
the latency with respect to FX

�

2VL/SL. In particular, a re-
duction of 5.0 % and 9.8 % in latency is observed for 6�6
and 8�8 at low traffic rates, respectively. Remember that in
these cases, the e-cube algorithm is the one that always pro-
vides minimal paths, thus decreasing packet latency, espe-

6Time required by a bit to reach the opposite link side.

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03) 
0190-3918/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:26 from IEEE Xplore.  Restrictions apply. 



0

5000

10000

15000

20000

25000

0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (bytes/ns/switch)

DFS_1VL
DFS_2VL

FX_1VL
FX_2VL

e-cube

(a)

0

5000

10000

15000

20000

25000

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (bytes/ns/switch)

DFS_1VL
DFS_2VL

FX_1VL
FX_2VL

e-cube

(b)

0

5000

10000

15000

20000

25000

0.02 0.04 0.06 0.08 0.1 0.12

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (bytes/ns/switch)

DFS_1VL
DFS_2VL

FX_1VL
FX_2VL

e-cube

(c)

Figure 6. Average packet latency vs. accepted traffic for the improved up*/down* routing, the Flexible
routing algorithm, and the e-cube algorithm. Torus of (a) 4�4, (b) 6�6, and (c) 8�8 switches. Packet
length is 512 bytes. Uniform packet distribution.

cially with short packets. However, when using long pack-
ets the differences in latency between e-cube and Flexible
routing algorithms are not so significant.

Figure 7 shows the simulation results for 3D tori of
3�3�3 and 4�4�4 switches. As can be seen, the perfor-
mance improvement achieved by the Flexible routing algo-
rithm for 3D tori is higher than that achieved for 2D tori.
In particular, FX

�

1VL/SL increases throughput by a fac-
tor of 1.1 with respect to the e-cube algorithm for 4�4�4
tori. Moreover, FX

�

2VL/SL increases throughput by a fac-
tor of 1.33 with respect to e-cube in 4�4�4 tori, whereas in
3�3�3 tori the achieved throughput is improved by a fac-
tor of 1.25. Furthermore, the benefits of using the Flexible
routing algorithm are more significant as long as it requires
only one SL and one or two VLs, whereas the e-cube needs
2VLs and 8SLs, for 2D and 3D tori, respectively.

Table 3 shows the factors of throughput increase of the
Flexible routing algorithm using 1VL/1SL and 2VL/2SL
with respect to the e-cube routing algorithm for 2D and 3D
tori when using different packet distributions and 512-byte
packets. As can be seen, when bit-reversal and matrix trans-
pose packet distributions are used, the obtained results are
qualitatively similar to those obtained for uniform distribu-
tion. For these packet distributions, all the packets from a
given host are sent to the same destination. This fact could
influence the relative behavior exhibited by the analyzed
routing algorithms. However, the results allow us to corrob-
orate the benefits of using the Flexible routing algorithm in
tori.

In Table 4 we can observe that when short packets are
used (32 bytes), the benefits of using the e-cube algorithm
in 6�6 and 8�8 tori increases with respect to the ones
achieved with long packets in 6�6 and 8�8 torus. This is
due to the fact that the latency of short packets is more sensi-
tive to the distance between hosts. Therefore, the advantage

of following shorter paths achieved by the e-cube algorithm
increases for short packets. In general, these results corrob-
orate those obtained with long packets.

7. Conclusions

In this paper, we have analyzed the performance of sever-
al routing algorithms for torus networks in InfiniBand. The
e-cube algorithm is compared with two generic routing al-
gorithms, such as the improved up*/down* and the Flexi-
ble routing algorithms, paying attention to both their perfor-
mance and the network resources (InfiniBand VLs and SLs)
required to support them. Medium sized networks with up
to 64 switches have been evaluated.

Evaluation results show that the Flexible routing algo-
rithm achieves the best performance for 3D tori and small
2D tori, whereas the e-cube algorithm achieves the best per-
formance for large 2D tori. The main drawback of the e-
cube algorithm is that it requires 2VLs and 4SLs (case of
2D tori) or 8SLs (case of 3D tori) to be implemented on In-
finiBand. This could become a serious problem if the num-
ber of available SLs (which are mainly intended to QoS)
is not enough to provide deadlock avoidance. However, the
Flexible routing algorithm only requires one SL/VL in all
cases. Taking into account that in the worst case (8�8 tori)
the throughput achieved by the Flexible routing algorithm
(using 2 SL/2VL) is only a 8.33 % lower than that of the
e-cube algorithm, we can conclude that the Flexible rout-
ing algorithm is the most cost-effective algorithm to be im-
plemented on InfiniBand using torus networks. Further, the
Flexible routing algorithm could achieve additional perfor-
mance by using more VLs and SLs. Also, unlike the e-cube
algorithm, it could continue to be applied in case of failures
in the network.
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Figure 7. Average packet latency vs. accepted traffic for the improved up*/down* routing, the Flexible
routing algorithm, and the e-cube algorithm. Torus of (a) 3�3�3, and (b) 4�4�4 switches. Packet
length is 512 bytes. Uniform packet distribution.

uniform bit-reversal matrix transpose

torus size 1VL/1SL 2VL/2SL 1VL/1SL 2VL/2SL 1VL/1SL 2VL/2SL

4�4 1.11 1.35 1.08 1.08 1.05 1.05
6�6 0.81 0.96 0.75 0.89 0.75 0.78
8�8 0.77 0.92 0.73 0.91 1.07 1.15

3�3�3 0.98 1.22 1.02 1.12 1.24 1.36
4�4�4 1.11 1.36 0.79 0.82 1.23 1.40

Table 3. Factors of throughput increase of the Flexible routing algorithm using 1VL/1L and 2VL/2L
with respect to the e-cube algorithm. Torus with 4�4, 6�6, 8�8, 3�3�3, and 4�4�4 switches. Uniform,
bit-reversal, and matrix transpose packet distributions. Packet length is 512 bytes.
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