
Destination-Based HoL Blocking Elimination

T. Nachiondo, J. Flich, and J. Duato
Dept. of Computer Engineering

Universidad Politécnica de Valencia
Camino de Vera, 14, 46071–Valencia, Spain

{tnachion,jflich,jduato}@disca.upv.es

Abstract

In future interconnection networks, congestion manage-
ment is likely to become a critical issue owing to increas-
ing power consumption and cost concerns. As congested
packets introduce head-of-line (HoL) blocking to the rest of
packets, congestion spreads quickly. The best-known solu-
tion to HoL blocking, Virtual Output Queues (VOQs), is not
scalable at all or too costly when implemented in large net-
works. In previous works, we proposed an efficient and cost-
effective solution, referred to as Destination-Based Buffer
Management (DBBM). DBBM groups destinations into dif-
ferent sets, and packets addressed to destinations in the
same set are mapped to the same queue. DBBM eliminates
most of the HoL blocking (among packets addressed to dif-
ferent sets). It achieves very good results in terms of scala-
bility, throughput, and robustness. However, depending on
the distribution of packet destinations, it may introduce an
uncertain degree of unfairness among packets mapped on
the same queue.

In order to overcome this problem we propose the Dy-
namic DBBM mechanism (DDBBM). DDBBM dynamically
eliminates completely the HoL blocking. Performance re-
sults show that DDBBM keeps (and in some cases improves)
the good results achieved by DBBM in terms of throughput
and scalability. Moreover, DDBBM solves the unfairness
introduced by DBBM. As an example of applicability, in this
paper we show that DDBBM can be applied to InfiniBand
with no hardware modification.

1 Introduction

Many compute-intensive applications (nuclear weapon
simulations, protein folding, global climate modeling, etc.)
require continued research and technology development
to deliver computers with steadily increasing computing
power. The required levels of computing power can only
be achieved with massively parallel computers. Examples
of these systems are the Earth Simulator [9] and the Blue-

Gene/L [5]. In these systems, interconnection networks
(ICTNs) with low communication latencies and high band-
width are becoming a key component.

Also, internet portal servers and data-center servers are
emerging environments where high performance ICTNs
(InfiniBand [13], Myrinet [6] . . .) are being preferred to
build cluster-based systems with adequate response time to
applications and final users.

In these networks contention is a classic problem. Con-
tention occurs when two packets compete for the same re-
source (typically a link). As the channel capacity is lim-
ited, one of the packets will be transmitted, while the other
will wait. If packets belonging to different flows request the
same resource, contention will occur among all the packets,
and flows will advance through the network at a lower pace.
Moreover, contention may derive in severe congestion if the
situation persists over time. In a congested situation, pack-
ets experience high latencies and the network collapses.

Traditionally, congestion has been managed by using
two different strategies: proactive techniques and reactive
techniques. Proactive techniques consists on preventing
the formation of congestion. Data is injected into the net-
work in such a way that congestion should never happen.
This is achieved either by reserving in advance network re-
sources (avoidance-based techniques) [18, 4] or by limit-
ing the routes followed by packets (prevention-based tech-
niques) [1, 16]. In general, the use of both techniques im-
plies a transmission scheduling that requires information
about the occupancy of network resources (buffers, links,
etc.) thus leading to inefficient solutions.

On the other hand, reactive techniques consist on detect-
ing the congested situations and activating later some mech-
anisms to eliminate the congestion. Most of the proposed
mechanisms [17, 8, 3] consist on notifying congestion to
the endnodes in order to cease or reduce the injection of
packets.

However, recently, a totally different approach has been
provided [12]. This new approach res on the idea that the
congestion is not a problem by itself. Simply, there are too
many packets competing for the same resource. The real
problem is the negative effects introduced by the conges-

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

tion. Once different flows become congested within the net-
work (forming a congestion tree) they introduce HoL block-
ing to the rest of non-congested flows. HoL blocking occurs
when a packet at the head of a queue can not be forwarded,
and it blocks the rest of packets in the queue; even if those
packets could make forward progress. If the HoL blocking
were removed, then congestion would be harmless. Based
on this approach, in [12] a new mechanism is provided,
referred to as RECN. This mechanism detects congestion
within the network, and instead of eliminating the conges-
tion, it eliminates the HoL blocking introduced by the con-
gested packets. This is achieved by dynamically allocating
queues to the congested packets, thus separating them from
the rest of packets. With this mechanism, maximum net-
work throughput is achieved regardless of the presence of
congestion. Unfortunately, RECN has been designed for
Advanced Switching (AS) [15] as it relies on the use of
source routing for checking if a packet belongs to a con-
gested tree, which prevents RECN to be applied to other
networks technologies such as InfiniBand (since InfiniBand
uses distributed routing). Moreover, RECN requires some
logic at the switches (queues and control structures) not
available in commercial products.

2 Motivation

It is well known that VOQs at network level (referred in
this paper to as V OQnet) [2, 14] is the best-known solution
to the HoL blocking problem. In V OQnet, every switch
port implements as many queues as final destinations, and
each queue is used only by packets addressed to a unique
destination. Although V OQnet completely eliminates HoL
blocking, it is not scalable at all, since memory require-
ments increase quadratically with the number of endnodes
in the network. This situation is aggravated by the increas-
ing demand for quality of service (QoS), as every service
level requires a dedicated buffer per port.

An alternative is the use of VOQs at switch level (re-
ferred in this paper to as V OQsw). In V OQsw , each switch
have at every input port as many queues as output ports, and
packets are mapped according to the requested output port
at the switch. Although the number of queues is signifi-
cantly reduced, HoL blocking can still occur between flows
sharing a subset of consecutive links along their paths. In-
deed, in [7, 11] it was demonstrated that as network size
increases, the percentage of HoL blocking not solved by
V OQsw increases.

In [10, 7, 11] we proposed and evaluated an scalable
and cost-effective solution to the HoL blocking problem,
the Destination-Based Buffer Management (DBBM) map-
ping scheme. In DBBM packets are mapped to queues ac-
cording to their destination (as in V OQnet), however, the
number of queues is significantly reduced (even lower than
the ones used in V OQsw). Basically, DBBM makes that
each queue store only packets for a subset of destination
ports. This can be viewed as if the physical output ports

of the network were grouped into a smaller set of logical
output ports, and a queue was used at each switch to al-
locate only packets destined to a particular logical output
port (i.e., VOQ at the logical port level). Therefore, most
of the HoL blocking is eliminated (all the HoL blocking
among different logical ports). The simplest implementa-
tion of DBBM is to use the lower bits of the destination ID
of a packet to select the queue (we refer to this as modulo
mapping). DBBM achieves a trade-off among implemen-
tation cost (the set of queues is reduced and the mapping
function required at switches is straight forward) and effi-
ciency (DBBM has demonstrated to be an efficient mapping
scheme, obtaining much better performance than V OQsw).

Unfortunately, DBBM can still suffer from HoL block-
ing (among packets addressed to the same logic port). The
percentage of affected destinations (victimized destinations)
will depend on the number of queues. For example, with
DBBM with 4 queues, only 25% of destinations will po-
tentially be affected by the congested destination. Thus,
as more queues were used in DBBM, the percentage of af-
fected destinations would decrease.

Also, the percentage of HoL blocking not solved by
DBBM depends on the number of congested destinations.
If the number of congested destinations increases, poten-
tially, more queues in DBBM will suffer HoL blocking, and
the percentage of victimized destinations will increase. As
an example, Figure 5.(e) shows the accepted traffic of each
endnode in a 64 × 64 multistage network when random
traffic is sent to all destinations and a hotpot is formed at
endnode 30. DBBM with 8 queues was used. As can be
observed, every eight destinations there is one with a sig-
nificant lower reception rate. This is because of the HoL
blocking introduced by the congested destination, thus in-
troducing unfairness (V OQsw also suffers the same prob-
lem). Notice that this problem comes from the static nature
of DBBM, because DBBM always maps the same destina-
tions into the same queues.

In this paper we present an effective mechanism able to
deal with HoL blocking problem as DBBM does but over-
coming the DBBM fairness weakness. This mechanism will
be also designed in such a way that can be used in Infini-
Band without switch modifications.

The proposed mechanism, referred to as Dynamic
DBBM (DDBBM), will eliminate most of the HoL blocking
by using the DBBM technique, and whenever a destination
becomes congested, its traffic will be dynamically separate;
congestion flow will be separate from the non-congested
one. In such a way, the unfairness introduced by DBBM
will be totally eliminated.

Additionally, in this paper we will address the main
aspects that must be dealt in InfiniBand in order to use
DDBBM, without requiring any change to current switch
architectures used in InfiniBand switches.

The rest of the paper is organized as follows. In Section 3
we describe the new proposed technique (DDBBM). Next,
in Section 4 we describe how the mechanism can be applied

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

to InfiniBand. Next, in Section 5 we analyze DDBBM in
terms of scalability, throughput, robustness, and most im-
portant, fairness. Finally, we draw our conclusions in Sec-
tion 6.

3 Dynamic DBBM (DDBBM)

DDBBM eliminates the HoL blocking not handled by
DBBM (the one caused among packets addressed to the
same set of destinations). Therefore, as DDBBM should
be seen as an improvement of DBBM, all the good prop-
erties of DBBM still remain (most of the HoL blocking is
eliminated with a low implementation complexity).

Basically, the DDBBM mechanism works as follows.
When an endnode detects that itself is a congested desti-
nation, it notifies that situation to the sources sending traffic
to it. Upon reception of the notification, sources will inject
packets addressed to the congested destination with a bit ac-
tivated (at the packet header). This bit is used by switches to
separate congested flows from non-congested flows. In or-
der to do this, at each switch input port one queue (referred
to as the dynamic queue) is used to allocate the congested
flows, whereas the remaining queues (referred to as DBBM
queues) are used to allocate non-congested flows according
to DBBM. Thus, each time a packet with its bit activated
is received it is allocated at the dynamic queue. As an ex-
ample, in a DDBBM mechanism with 8 queues for DBBM
and a dynamic queue, a packet addressed to destination 48
will be mapped into queue zero (modulo mapping). How-
ever, if destination 48 becomes congested, then packets ad-
dressed to that destination will be mapped into the dynamic
queue. As the congested packets will be mapped on a differ-
ent queue, DBBM queues will not allocate congested pack-
ets and therefore, the HoL blocking that packets addressed
to destination 48 might cause will be eliminated.

DDBBM resembles a limitation-based congestion con-
trol mechanism where destination nodes detect congestion
and inform sources to limit the injection (to eliminate con-
gestion). However, notice that DDBBM neither limits
source traffic injection nor eliminates congestion. Instead,
it will let the sources to keep their injection rate. A well-
known problem of limitation-based protocols is that their
efficiency depends on network size and link bandwidth.
Probably, at the moment sources are notified, the congestion
may be formed within the network or may even vanished,
thus introducing oscillations. However, this problem have a
minor impact when DDBBM is implemented, as congestion
will only affect to a small percentage of packets.

3.1 Detection of Start/End of Congestion

We need a fast and accurate detection mechanism at the
endnode. The mechanism should be fast in order to min-
imize the time during which HoL blocking takes place.
Also, the mechanism should be accurate in order to pre-
vent false positive detections. Inaccurate detections could

lead to worse results, since extra HoL blocking could be
introduced. For instance, if the mechanism detects that
two destinations are congested, one of them wrongly de-
tected, massive HoL blocking would be introduced to the
non-congested flow (as packets for both destinations would
be mapped into the dynamic queue). Thus, the key piece of
DDBBM is the congestion detection mechanism.

As a first approach to the detection mechanism, each
endnode observes its received traffic rate. An endnode
considers that it is becoming congested whenever its re-
ception rate is higher than a fixed threshold value (Detec-
tion Threshold expressed in bytes, DT). Similarly, an
endnode is no longer congested whenever its reception rate
is lower than a fixed threshold value (Low Threshold ex-
pressed in bytes, LT). The reception rate can be eas-
ily computed at the endnode. Simply the number of bytes
received must be counted during a defined reception time
frame (T imeFrame expressed in cycles).

With this mechanism, permanent congestion at a destina-
tion will be detected sooner or later depending on the DT
and LT threshold values. However, experiencing a high re-
ception rate does not necessarily means that the endnode
is congested. Indeed, congestion occurs at a destination
endnode only when there is more bandwidth demand than
the offered bandwidth at the destination. Since the endnode
only can count the quantity of bytes received, it does not
know if the high reception rate is because of a congested
situation (sources request more bandwidth than the offered
one) or if it is because of sources request just the offered
bandwidth. The only way to properly identify conges-
tion would be achieved by inspecting switches and source
endnodes. If they (switches and/or endnodes) start accu-
mulating packets then there is a congested situation. How-
ever, notice that inspecting switches and endnodes would
increase the complexity of the mechanism.

Instead, DDBBM will detect congestion at the endnodes
by considering the number of sources (Number of sources
threshold, NS) sending traffic and their injection rates
(Source Injection Threshold, SIT). In case an endnode is
congested, most of its received traffic will be generated by
few sources. So, some sources will be injecting more traffic
than the rest.

Figure 1 shows the detection mechanism with all the
parameters to be considered. A register is used per each
different threshold to be considered (DT , LT , NS , and
SIT). Also, additional registers are used for the time frame
(T imeFrame) in cycles, the overall number of bytes re-
ceived (ORB), and a bank of registers for the number of
bytes received per source (SRB).

The mechanism works as follows. At the start of a time
frame, the counter is set with the T imeFrame value and
the ORB and all the SRB registers are set to zero. During
the time frame, the counter is decremented cycle by cycle
and the reception rate is quantified. Whenever a new packet
arrives, the corresponding SRB and the ORB registers are
updated accordingly.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

When the counter reaches zero a time frame has expired
and the detection mechanism is triggered. At this point, the
comparers are enabled. In particular, ORB is compared
with DT register. Also, all the SRB registers are com-
pared in parallel with the SIT register. Then, the number
of SRB registers with larger values than the SIT register
is calculated, and the result compared with the NS register.
With all this processing, the final decision on congestion
is made. If the number of bytes received (ORB) is higher
than the DT register and the number of sources sending too
much data is higher than the NS register, then the endnode
is considered as congested. In that situation, the congestion
bit (CB) is set. However, if the number of bytes received
(ORB) is lower than the LT register, the endnode is not
considered congested anymore and the CB bit is reset. Re-
gardless of the detected situation, at this point in time a new
time frame is started.

3.2 Notification of Congestion

Once an endnode detects the start or the end of conges-
tion (the CB bit changes), it notifies the new situation to
that sources that have sent packets recently. This info is
available in the detection mechanism logic (SRB register).
This end-to-end notification mechanism keeps switch com-
plexity low.

When end of congestion is detected, the endnode no-
tifies only the sources that were previously notified about
the congestion. Since the information located in the de-
tection mechanism is reset each time frame, and the con-
gested situation may last several time frames, the endnode
needs a data structure to keep the information regarding the
notified sources. For this reason, a notification bit vec-
tor is used at each endnode. The notification bit vector
has as many elements (bits) as endnodes in the system.
Once congestion is detected, the endnode sends a notifi-
cation to all the endnodes that have sent traffic within the
time frame (SRB register with a non zero value). At the
same time, the corresponding bits in the notification vec-
tor are set. During the time the CB bit is set, if a new
source sends data to the endnode, it will be notified, and
its notification bit will be set. When the end of congestion
is detected (CB bit is reset) a notification will be sent to
those endnodes with their bits set in the notification vec-
tor. At the same time, the corresponding bits in the noti-
fication vector will be reset. DDBBM will use an specific
control packet to notify the current congestion situation (re-
ferred to as a notification packet). Control packets uses the
same resources than data traffic (notification in-band), thus
consuming data bandwidth. In order to reduce to the mini-
mum the consumed bandwidth, notification packets are only
packet header (without payload).

3.2.1 DDBBM on a Sender Endnode

Each endnode will have a bit vector (referred to as status bit
vector) with as many bits as endnodes on the network. In
the status bit vector, each bit will correspond to an endnode
status. When the bit for an endnode is set, it means that the
endnode is considered as a congested destination. Initially
all the endnodes are considered as non-congested endnodes.
When an endnode receives a notification packet (meaning
start or end of congestion) it will commute the bit of the
endnode that sent the notification. Thus, the congestion bit
mirrors the CB bit at destination.

When an endnode has data to transmit, a data packet is
built and injected. The value of the congestion bit on the
packet header is stamped directly from the status bit vector.
Therefore, all the packets addressed to a congested destina-
tion will have activated their congestion bit.

3.2.2 DDBBM on a Switch

Switches must identify packets going to a congested desti-
nation in order to separate them from the rest of traffic. Con-
gested flows must be allocated in the dynamic queue, while
the other flows must be allocated in the DBBM queues. The
allocation decision is taken based on the congested bit of the
header of each arriving packet. If the bit is reset, the packet
is allocated in a DBBM queue (DBBM modulo mapping).
However, if the bit is set, the received packet is allocated in
the dynamic queue.

The dynamic queue can be flow controlled in the same
way as the other queues are. Indeed, this queue can be im-
plemented in the same memory. Thus, credit-based flow
control can be used

3.2.3 Out of order delivery issues

Since traffic will be dynamically separated, out of order is-
sues may appear. Out of order may be present only among
packets for the same flow (source-destination pair). Since
such packets are mapped into the same queues (DBBM
strategy) they will arrive at the destination in the same or-
der as they were injected. However, now in DDBBM, two
consecutive packets injected from the same source to the
same destination may arrive out of order, simply because
the second packet is separated from the normal traffic and
thus mapped in the dynamic queue, thus potentially advanc-
ing at a faster rate than the previous packet.

In order to guarantee in order delivery, the sender must
ensure that packets belonging to the same message will be
handled in the same way. For this reason, if the sender re-
ceives a notification while a message is being sent (some
packets belonging to that message have been already sent),
it will not modify the congestion bit in the remaining pack-
ets of that message. The new value will be applied to the
next message. Notice that only a fixed delay is introduced
in the sender.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

.
.

.

.
.

.

= zero load
COUNTER

E

>

C
O

M
PA

R
E

R

E

>

C
O

M
PA

R
E

R
REGISTER

LT

E

>

C
O

M
PA

R
E

R

.
.

.

.
. .

F

C
O

M
PA

R
E

R

Coder
Numeric

*

D
E

M
U

X
pe

r
so

ur
ce

Reset
Reset
Reset

Reset

REGISTER

E
F
F

E

>

Reset

>
>
>

>Reset

FRAME TIME
REGISTER

Frame
Time

Reset

REGISTER

REGISTER

Input Link

ENDNODE ACTING AS A RECEIVER

SIT

REGISTER
NSDT

Reset

Set

REGISTER

CB

Congestion Detected

End of Congestion Detected

SRB

ORB

.
.
.

.
.

.
.

.
.

.
. .

F

C
O

M
PA

R
E

R

Coder
Numeric

*

D
E

M
U

X
pe

r
so

ur
ce

Reset
Reset
Reset

Reset

REGISTER

E
F
F

E

>

Reset

>
>
>

>Reset

FRAME TIME
REGISTER

Frame
Time

Reset

REGISTER

REGISTER

Input Link

ENDNODE ACTING AS A RECEIVER

SIT

REGISTER
NSDT

Reset

Set

REGISTER

CB

Congestion Detected

End of Congestion Detected

SRB

ORB

C
O

M
PA

R
E

R

E

>

C
O

M
PA

R
E

R

E

>

C
O

M
PA

R
E

R

E

>

= zero load
COUNTER

REGISTER
LT

Figure 1. Logic for measuring congestion and detecting congestion.

4 Implementation of DDBBM on InfiniBand

One of the goals of the paper is to adapt DDBBM to
InfiniBand (IBA) with no switch modification. Indeed only
tables provided by the standard and located at switches will
be modified.

In IBA, routing and virtual channel (they are referred to
as Virtual Lanes, VLs) selection is performed based on the
destination local ID (DLID) and the service level (SL) fields
of the packet header. These two fields are computed at the
source node and do not change along the path. Every switch
has a forwarding table which provides only one output port
(and always the same) for each destination. Thus, IBA uses
deterministic routing.

Up to 15 data virtual lanes can be implemented in IBA.
Virtual lane selection is based on the use of service levels
(SLs). By means of SLtoVL mapping tables located on ev-
ery switch, SLs are used to select the proper VL at each
switch. This table returns, for a given input port and a given
SL, the VL to be used at the corresponding output port. For
this, the SL is placed at the packet header and it cannot be
changed by the switches. Therefore, we should also assign
the proper SL that must be used for a given path. VLs and
SLs were initially defined in IBA for providing QoS, dead-
lock avoidance and traffic parting.

SLToVL(0,1,1) =1
FT(30)=1

VL=0
Dst=30

SL=1

Packet

VL=0
Dst=30

SL=1

Packet

1 10 0

SLToVL(1,1,0) =0
FT(30)=0

Endnode 18

00

Endnode 30

Figure 2. Example of the VLs used in IBA.

Figure 2 shows a routing example in InfiniBand. When-
ever a packet is injected into the network, the endnode
(endnode 18) computes the SL of the packet (there are up to
16 SLs) and the initial VL to use. In the example, the SL is
set to 1 and the initial VL is set to 0. At the first switch the
VL used to map the packet is VL0 (as the initial VL was set
to zero). At that switch the next VL to use might be changed
if the SLtoVL indicates so. In particular, the SLtoVL table
at the first switch indicates that at the next switch the VL to
use will be VL1. Notice also that the output port selected
at each switch is extracted from the forwarding table (FT
function in the example).

To implement DDBBM we will use SL identifiers and
different VLs. A particular VL (referred to as V Li) can be
used along any path by using a SL identifier (referred to as
SLi) and all the SLtoVL tables being programmed in such a
way that whenever the SL of the packet is SLi, regardless of
the input and output ports, the provided VL is V Li. Thus, if
we want to implement DDBBM with 5 queues (4 queues for
DBBM, and one for the dynamic queue) we must reserve 5
SL identifiers and program the corresponding SLtoVL ta-
bles.

Now, at the endnodes we need to compute for each
packet the proper SL. We need to implement the status bit
vector and the modulo selection at the endnode. For effi-
ciency reasons the vector should be included at the network
interface. Simply whenever a packet is going to be injected,
the status bit for the corresponding destination is inspected.
If the bit is set, then the SL that forces the dynamic queue
(SL4 for a DDBBM implementation with 5 queues (VL0
through VL4)) is selected. If not, then lower bits of desti-
nation indicate the SL. In our example, the lower two bits.
Notice that the selection may be implemented in the subnet
manager located on every channel adapted in InfiniBand.

Finally, we need to implement the detection mechanism
at the endnodes and the notification of congestion. Regard-

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

ing the detection mechanism, it must be implemented at the
network interfaces. Again, at the endnodes we may rely on
the subnet manager in order to keep the statistics of traffic
and to issue notification packets to the endnodes. For noti-
fications we can use the VL15. This virtual lane is reserved
for control packets in InfiniBand.

5 Performance Evaluation

In this section we will evaluate the DDBBM strategy.
For this purpose we have developed a detailed event-driven
simulator that allows us to model the network at the register
transfer level. Firstly, we will describe the main simulation
parameters and the modeling considerations we have used
in all the evaluations. Secondly, we will present the evalua-
tion results and analyze them.

5.1 Simulation Model

The simulator models an ICTN with switches, nodes,
and links. Buffers up to 1KB are modeled for both the input
and the output ports of every switch. The buffer capacity is
statically divided by the number of queues defined by each
of the evaluated mapping schemes, resulting in a fixed size
per queue.

At every switch packets are forwarded from any input
queue to any output queue through a multiplexed crossbar.
We have considered a crossbar bandwidth of 1.5 GB/s with
a speedup of 1.5. The crossbar is controlled by a scheduler
that receives requests from the packets at the head of any
input queue. A requesting packet is forwarded only if the
corresponding crossbar input and crossbar output are free.
At each output port a weighted round-robin arbiter selects
the output queue to be served.

For links we assume serial full-duplex pipelined trans-
missions with 1 GB/s effective bandwidth. The link-level
flow control (LL-FC) protocol is credit-based; a packet
can be transmitted downstream only if a credit is avail-
able. Whenever a packet frees an input buffer location a
new credit is sent to the output port upstream. A similar
flow control scheme has been implemented for the inter-
nal switch traversal (input-output packet forwarding). The
maximum number of credits per output (input) port depends
on the buffer size at the next input (output) port and the to-
tal number of queues. The LL-FC packets share the link
bandwidth with data traffic.

The endpoints are connected to switches using Input
Adapters (IAs). Every IA is modeled by (i) a fixed number
N of message admittance queues organized in VOQ; (ii)
and a variable number of injection queues organized simi-
larly to the output ports of a switch. When a new message
is generated, first it is stored completely in the admittance
queue assigned to its destination; then it is segmented into
64B packets before being transferred to an injection queue.
The transfer from admittance queues to injection queues are

controlled by a round-robin arbiter. The transmission of
packets from injection queues into the network is controlled
by a weighted round-robin arbiter.

5.2 Topologies and Traffic Patterns

DDBBM will be evaluated in different bidirectional mul-
tistage networks (BMINs) and 2D/3D meshes. In particu-
lar, 64 × 64, 512 × 512, and 1024 × 1024 BMINs will be
used, each one built using 8-port switches interconnected in
a perfect shuffle connection pattern. The routing algorithm
is deterministic. For the regular topologies, 4 × 4, 8 × 8,
16× 16, 8× 8× 4, and 4× 4× 4 will be evaluated. In this
case we will use the Dimension Order Routing (DOR).

For the BMINs networks we have defined 7 different
synthetic traffic patterns (see Table 1). In #1B1 all the
sources inject at 100% rate with an uniform destination dis-
tribution. Cases #2B-#7B cause at least a congestion tree
by oversubscribing a hotspotted endnode: 30% of sources
injecting at the full rate to a randomly selected hotspot des-
tination. The rest of traffic (background traffic) is made of
the remaining sources (70%) injecting at 60% of link band-
width to randomly selected destinations. As the background
traffic shares links and queues with the flows belonging to
the congestion tree, substantial HoL blocking will be intro-
duced in multiple switches.

On the other hand, in regular networks we have defined
9 different scenarios based on synthetic traffic patterns (see
Table 1). All the cases cause a congestion tree by over-
subscribing the hotspotted endnode. In this case, the back-
ground traffic is made of 70% of the sources injecting at
20% of link bandwidth to randomly selected destinations,
while the remaining 30% of sources inject at full rate to a
randomly selected hotspot destination.

We will analyze the behavior of DDBBM with different
number of queues. For comparison purposes we will also
evaluate the V OQnet, V OQsw , and the DBBM mapping
policies. For DBBM we will also use different number of
queues.

5.3 DDBBM Sensitivity to Thresholds

In order to evaluate the robustness of DDBBM to
changes in DT , LT , and SIT parameters, cases #1B, #3B,
#2M and #5M will be evaluated with the following values of
these parameters:DT =0.8,0.95, LT =0.2,0.4, and SIT =0,6.
The DT and LT parameters are expressed as percentages
of the reception rate. However, the SIT parameter is ex-
pressed as the times that the source exceeds the base injec-
tion rate (100/N)% (assuming a network with N endnodes).
For instance, a SIT = 6 means that the destination must

1Notice that in order to differentiate clearly the studied cases, BMINs
cases will be referred to as the case number followed by a B letter while
mesh cases will be referred to as the number of the case followed by an M
letter.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

Traffic to: random dests hotspot
Network % of injecting % of injecting

Case Evaluated sources (IR) sources (IR)
(endnodes) [destinations]

#1B 64 × 64 (4) 100% (100%) - (-) [-]
#2B 64 × 64 (4) 70% (60%) 30 % (60%) [1]
#3B 64 × 64 (4) 70% (60%) 30 % (100%) [1]
#4B 64 × 64 (4) 70% (90%) 30 % (60%) [1]
#5B 64 × 64 (4) 70% (60%) 30 % (100%) [5]
#6B 512 × 512 (4) 70% (60%) 30 % (60%) [1]
#7B 1024 × 1024 (4) 70% (60%) 30 % (60%) [1]

#1M 8 × 8 (1) 100% (20%) - (-) [1]
#2M 4 × 4 (4) 100% (20%) - (-) [1]
#3M 8 × 8 (1) 70% (20%) 30% (100%) [1]
#4M 8 × 8 × 4 (1) 70% (20%) 30% (100%) [1]
#5M 4 × 4 (4) 70% (20%) 30% (100%) [1]
#6M 16 × 16 (1) 70% (20%) 30% (100%) [1]
#7M 8 × 8 (4) 70% (20%) 30% (100%) [1]
#8M 4 × 4 (16) 70% (5%) 30% (100%) [1]
#9M 4 × 4 × 4 (4) 70% (20%) 30% (100%) [1]

Table 1. Topologies and traffic patterns.

receive (600/N)% of the total received traffic from an par-
ticular source to decide that this source is contributing to the
congestion. A value of zero means that the SIT parameter
is disabled.

For all the cases, the NS parameter has been set to one.
Thus, at minimum the traffic injected by at least two sources
must overtake the SIT threshold to congestion be detected.

5.3.1 Evaluation Results

Figure 4.(a) shows results for the #1B topology/traffic case
with DT = 0.95, LT = 0.2, and SIT = 0. In this
case, all the evaluated mapping schemes except DDBBM
achieve the maximum throughput. In this case, as the SIT
parameter is disabled, most of the endnodes detect conges-
tion (although uniform traffic is in the networks). All the
endnodes receiving at a rate higher 95% of their link band-
width will be considered as a hotspotted endnode. These de-
tections can be considered as false positives. After notifying
sources, all the injected packets are mapped in the dynamic
queue thus introducing massive HoL blocking. Therefore,
DDBBM exhibits poor performance levels. We have an-
alyzed topology/traffic case #1B with increasing values of
SIT . Results show that as we increase the value of SIT ,
DDBBM performance increases. Concretely, when SIT
is set to 6, DDBBM achieves the same performance as
V OQnet, as the false congestion detected by endnodes is
filtered. Figure 4.(b) shows results for topology/traffic case
#1B with SIT = 6.

Moreover, we have analyze the impact of DT and LT
thresholds. Results obtained are similar for all the DT and
LT defined values, showing that DT and LT thresholds
have low impact on network performance.

On the other hand, the same evaluation applied to topol-

 0

 10

 20

 30

 40

 50

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
e
tw

o
rk

 t
h
ro

u
g
h
p
u
t
(b

y
te

s
 p

e
r

n
a
n
o
s
e
c
o
n
d
)

Nanoseconds

’DBBM-4Q’

’DDBBM-5Q’

’VOQ_Net’

’VOQ_SW’

Figure 3. Accepted traffic. SIT = 0

 0

 10

 20

 30

 40

 50

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
e
tw

o
rk

 t
h
ro

u
g
h
p
u
t
(b

y
te

s
 p

e
r

n
a
n
o
s
e
c
o
n
d
)

Nanoseconds

’DBBM-4Q’

’DDBBM-5Q’

’VOQ_Net’

’VOQ_SW’

Figure 4. Accepted traffic. SIT = 6

ogy/traffic cases #3B, #2M and #5M, not shown, does not
present any difference in the obtained performance for case
#1B.

Therefore, we can conclude that the DDBBM mecha-
nism is largely insensitive to DT , LT , and under high uni-
form traffic and BMIN topologies there exists a dependence
on the SIT parameter. Based on these results, in the follow-
ing evaluations we will use the following DDBBM param-
eters: DT =0.95, LT =0.2, and SIT =6.

5.4 Fairness of DDBBM

In this Section we will analyze the level of unfairness in-
troduced by the different mapping policies. From previous
works we know that DBBM introduces certain levels of un-
fairness to some destinations. This is because DBBM maps
different flows to the same queue, and thus HoL blocking is
not eliminated completely. Notice that this problem is the
main motivation for designing DDBBM.

In Figure 5 we can see the traffic received by each
endnode for topology/traffic case #3B (64×64 BMIN) when
V OQnet, V OQsw , DBBM-4Q and DDBBM-5Q schemes
are used. The endnode with the highest traffic reception
rate corresponds to the hotspot (endnode 30), which reaches
90% of reception rate (axes are truncated at 50%). With
V OQnet every destination, except the hotspot, receives
roughly the same goodput. However, with V OQsw, all
the flows that share any queue along their path with the

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

Figure 5. BMIN Accepted traffic per destination.

congested flow suffer from HoL blocking. The bar graph
of the V OQsw in Figure 5, we can see how every 4 con-
secutive endnodes exhibit similar percentages of accepted
traffic. This pattern is consequence of the number of links
per switch together with the routing algorithm applied. The
routing algorithm will determine the output link for each
packet and consequently which packets will be mapped
into the same queue as the packets addressed to the con-
gested destination. Hence the reduction in the number of re-
ceived packets by the victimized destinations. With DBBM
(DBBM-4Q bar graph in Figure 5) the number of affected
flows depends on the number of queues, but not on routing
neither the number of links per switch.

However, DDBBM-5Q completely eliminates the HoL
blocking, and hence the unfairness. The DDBBM-5Q bar
graph in Figure 5 shows that the traffic received by each
endnode is roughly the same. Therefore, the HoL block-
ing experienced by DBBM has been completely eliminated
by DDBBM. Thus, the detection mechanism has identified
correctly the congested destination (endnode 30) and the
packets addressed to the congested destination have been
mapped into the dynamic queue.

Bar graphs of DBBM-8Q/16Q and DDBBM-9Q/17Q in
Figures 5 show similar results with topology/traffic cases
#6B and #7B. In these cases, the mechanism is much more
stressed as the network is larger (512×512 and 1024×1024
BMIN networks). However, only in case #7B (1024× 1024
BMIN) DDBBM shows some kind of unfairness. This is
because although congestion tree is isolated, the reduced

number of queues applying DDBBM scheme respect to the
total number of endnodes will introduce a slight HoL block-
ing among the non congested flows.

To conclude, results show that only when packets ad-
dressed to the congested destination are isolated in a queue,
unfairness is eliminated. Excepting V OQnet and DDBBM
schemes, all the other schemes introduce some degree
of unfairness under high load and congestion. However,
DDBBM with a very low number of queues eliminates un-
fairness completely.

Fairness has been also analyzed in 2D/3D meshes in or-
der to confirm the good behavior of DDBBM observed in
BMIN networks. In this case, similar results have been ob-
tained. Figure 6 shows received traffic for each destination
over the different mapping schemes (V OQnet, V OQsw ,
DBBM, and DDBBM, respectively) for topology/traffic
cases #5M (4× 4 mesh with 64 endnodes), and #8M (4× 4
mesh with 256 endnodes). In all the analyzed cases (cases
#5M, #7M (figures not shown), #8M, and #9M (figures not
shown)) DDBBM successfully eliminates dynamically all
the unfairness that would be introduced by the congested
destination. This behavior confirms that DDBBM indepen-
dently of the size and topology of the network does not
present unfairness.

5.5 Throughput Analysis

Finally we evaluate DDBBM in terms of achieved net-
work throughput. Figure 7 shows the obtained through-

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

Figure 6. Mesh Accepted traffic per destination.

put in the evaluated cases. The graph on top in Figure
7 shows the throughput achieved for topology/traffic cases
#2B, #3B, #4B, and #5B. For topology/traffic cases #2B we
can observe that both V OQnet and DDBBM-5Q achieve
the maximum throughput whereas DBBM-4Q and V OQsw

show lower throughput numbers. V OQsw achieves 70% of
the DDBBM throughput, whereas DBBM-4Q performs bet-
ter. Concretely, DBBM-4Q achieves 92% of the DDBBM
throughput. Similarly, for topology/traffic cases #3B and
#4B, where DDBBM-4Q performs equal than V OQnet,
and DBBM-4Q achieves 88% and 89% of DBBM through-
put (cases #3B and #4B respectively), whereas V OQsw

only achieves 59 and 61% of DDBBM throughput (cases
#3B and #4B respectively). Finally, in case #5B, where 5
lower intense congestion trees are formed, all of the eval-
uated mapping schemes perform the maximum throughput.
As a summary of all these results: DDBBM-5Q achieves
V OQnet throughput in all the hot spot evaluated cases.

For 2D meshes, the bar graph down in Figure7 shows the
throughput achieved for topology/traffic cases #1M, #3M,
#4M, and #6M. We see that topology/traffic cases #1M and
#2M show equal characteristics. All the mapping schemes
achieves the maximum performance. This is because the
network is able to absorb the injected traffic at the rate
that is injected (not hotspotted endnode appears). How-
ever, when a congestion tree is formed, as in cases #3M,
#4M, and #6M, results show that only DDBBM is able to
achieve V OQnet throughput. Likewise, we see that al-
though DBBM is not able to reach V OQnet throughput,
it shows better performance than V OQsw as this method
perform the worst in all the cases. Notice that this behav-
ior keeps despite the increase in the number of endnodes
(cases #4M and #6M). These results confirms our results
from BMIN networks: regardless of the topology DDBBM

is able to reach maximum performance while using a re-
duced set of queues.

It has to be noted that we also have evaluated the
DDBBM mechanism with real traffic (extracted from IP and
SAN traces). In all the cases, the DDBBM mechanism has
been achieved the maximum performance with very low
queue requirements. It also completely eliminates the un-
fairness introduced by DBBM. However, we believe that
results from the synthetic traffic are much more interesting
since we can predict the results.

6 Conclusions

In this paper we have proposed a mechanism able to dy-
namically eliminate the HoL blocking caused by congested
endnodes. This is achieved by designing a detection mech-
anism at the endnodes and then notifying sources in order
to separate the traffic sent to congested endnodes from the
rest of traffic. The mechanism has been designed in order
to simplify the switch design. Therefore, it allows its use on
commercial products. Indeed, the paper has presented also
a method to apply DDBBM in InfiniBand without hardware
modification.

The results presented clearly demonstrate that the pro-
posed scheme, DDBBM, achieves similar performance
than V OQnet scheme, and better than the other ana-
lyzed schemes (DBBM and V OQsw), with much fewer re-
sources. These good results are in terms of throughput and
fairness, under a wide range of traffic and topologies. Also,
DDBBM sensitivity to threshold values has been evaluated.
Results have shown that only under high uniform traffic and
BMIN topologies there exists a dependence on the SIT pa-
rameter. However, with a fine tuning of the parameter, the

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

Figure 7. Throughput vs Mapping Scheme.

adverse case is solved. Also, detection thresholds (DT and
LT) are highly insensitive to DDBBM final performance.

As future work we plan to evaluate the DDBBM mech-
anism on real traffic. For this we plan to implement the
mechanism on InfiniBand and to use real InfiniBand plat-
forms with real traffic for its test.

References

[1] G. S. Almasi and A. Gottlieb, ”Highly parallel com-
puting,” Ed. Benjamin-Cummings Publishing Co., Inc.,
1994.

[2] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, ”High
Speed Switch scheduling for local area networks,” in
ACM Trans. Computer Systems, Nov. 1993.

[3] E. Baydal and P. Lopez, ”A Robust Mechanism for
Congestion Control: INC,” in Proc. 9th International
Euro-Par Conference, pp. 958–968, Aug. 2003.

[4] R. Bianchini, T. J. LeBlanc, L. I. Kontothanassis, and
M. E. Crovella, ”Alleviating Memory Contention in
Matrix Computations on Large-Scale Shared-Memory
Multiprocessors,” Tech. report 449, Computer Science
Dept., Rochester University, April 1993.

[5] IBM BG/L Team, ”An Overview of BlueGene/L Super-
computer,” in High Performance Networking and Com-
puting (SC2002), Nov. 2002.

[6] N.J. Boden et al, ”Myrinet - A gigabit per second local
area network,” in IEEE Micro, Feb. 1995.

[7] T. Nachiondo, J. Flich, and J. Duato, ”Efficient Reduc-
tion of HOL blocking in Multistage Networks,” in Proc.
2005 Int. Parallel and Distributed Processing Sympo-
sium, April 2005.

[8] W. J. Dally and H. Aoki, ”Deadlock-Free Adaptive
Routing in Multicomputer Networks Using Virtual
Channels,” in IEEE Trans. on Par. and Distr. Systems,
vol. 4, no. 4, April 1993.

[9] Earth Simulator Center. http://www.es.jamstec.go.jp/
esc/eng/index.html.

[10] J. Duato, J. Flich, and T. Nachiondo, ”Cost-Effective
Technique to Reduce HOL-blocking in Single-Stage
and Multistage Switch Fabrics,” in Proc. Euromicro
Conf. on Par., Distr. and Network-based Processing,
Feb. 2004.

[11] T. Nachiondo, J. Flich, J. Duato, and M. Gusat,
”Cost/Performance Trade-offs and Fairness Evaluation
of Queue Mapping Policies,” in Proc. International
Euro-Par Conference, Lisbon, Aug. 2005.

[12] J. Duato, I. Johnson, J. Flich, F. Naven, P. Garca,
and T. Nachiondo, ”A New Scalable and Cost-Effective
Congestion Management Strategy for Lossless Mul-
tistage Interconnection Networks,” in Int. Symp. on
High-Performance Comp. Arch., Feb. 2005.

[13] InfiniBand Trade Association, ”InfiniBand Architec-
ture. Specification Volume 1. Release 1.0,” Available at
http://www.infinibandta.com/.

[14] N. McKeown, ”Scheduling algorithms for input-
queued cell switches,” Ph.D. Thesis, University of Cal-
ifornia at Berkeley, 1995.

[15] ”Advanced Switching for the PCI Express Architec-
ture,” White paper.

[16] S. L. Scott, and G. S. Sohi, ”The Use of Feedback in
Multiprocessors and Its Application to Tree Saturation
Control,” in IEEE Trans. on Parallel Distr. Systems, vol.
1, no. 4, Oct. 1990.

[17] M. Thottethodi, A. R. Lebeck, and S. S. Mukher-
jee, ”Self-Tuned Congestion Control for Multiproces-
sor Networks,” in Proc. Int. Symp. High-Performance
Computer Architecture, Feb. 2001.

[18] P. Yew, N. Tzeng, and D. H. Lawrie, ”Distributing
Hot-Spot Addressing in Large-Scale Multiprocessors,”
in IEEE Trans. Computers, vol. 36, no. 4, April 1987.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

