
Dynamic Evolution of Congestion Trees: Analysis and
Impact on Switch Architecture�

P.J. Garcı́a1, J. Flich2, J. Duato2, I. Johnson3, F.J. Quiles1, and F. Naven3

1 Dept. de Informática. Univ. Castilla-La Mancha 02071-Albacete, Spain
{pgarcia, paco}@info-ab.uclm.es

2 Dept. of Computer Science, Univ. Politécnica de Valencia 46071-Valencia, Spain
{jflich, jduato}@disca.upv.es

3 Xyratex, Haven, United Kingdom
{Ian Johnson, Finbar Naven}@xyratex.com

Abstract. Designers of large parallel computers and clusters are becoming in-
creasingly concerned with the cost and power consumption of the interconnec-
tion network. A simple way to reduce them consists of reducing the number of
network components and increasing their utilization. However, doing so without
a suitable congestion management mechanism may lead to dramatic throughput
degradation when the network enters saturation. Congestion management strate-
gies for lossy networks (computer networks) are well known, but relatively little
effort has been devoted to congestion management in lossless networks (paral-
lel computers, clusters, and on-chip networks). Additionally, congestion is much
more difficult to solve in this context due to the formation of congestion trees.

In this paper we study the dynamic evolution of congestion trees. We show
that, contrary to the common belief, trees do not only grow from the root toward
the leaves. There exist cases where trees grow from the leaves to the root, cases
where several congestion trees grow independently and later merge, and even
cases where some congestion trees completely overlap while being independent.
This complex evolution and its implications on switch architecture are analyzed,
proposing enhancements to a recently proposed congestion management mecha-
nism and showing the impact on performance of different design decisions.

1 Introduction

Designers of large parallel computers, clusters, and on-chip networks are becoming
increasingly concerned with the cost and power consumption of the interconnection
network. Effectively, current interconnect technologies (Myrinet 2000 [24], Quadrics
[28], InfiniBand [16], etc.) are expensive compared to processors. Also, power con-
sumption is becoming increasingly important. As link speed increases, interconnects
consume a greater fraction of the total system power [30]. Moreover, power consump-
tion in current high-speed links is almost independent of link utilization. In order to
reduce system power consumption, researchers have proposed using frequency/voltage
scaling techniques [30]. Unfortunately, these techniques are quite inefficient due to their

� This work was supported by CICYT under Grant TIC2003-08154-C06, by UPV under Grant
20040937 and by Junta de Comunidades de Castilla-La Mancha under Grant PBC-05-005.

T. Conte et al. (Eds.): HiPEAC 2005, LNCS 3793, pp. 266–285, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Evolution of Congestion Trees 267

slow response in the presence of traffic variations and the suboptimal frequency/voltage
settings during transitions [34].

As the interconnection network has traditionally been overdimensioned, a simple
way to reduce cost and power consumption is reducing the number of network com-
ponents (i.e. switches and links) and increasing their utilization. However, this solution
will increase network contention that, as traffic is usually bursty, may lead to congestion
situations. In general, congestion will quickly spread through the network due to flow
control, forming congestion trees. The main negative effect of these situations happens
when packets blocked due to congestion prevent the advance of other packets stored
in the same queue, even if they are not going to cross the congested area. This effect
is referred to as head-of-line (HOL) blocking, and may produce a dramatic network
throughput degradation.

The behavior of network congestion depends on switch architecture. HOL block-
ing is one of the main problems arising in networks based on switches with queues
at their input ports (Input Queuing, IQ switches), because blocked packets destined to
congested output switch ports prevent the advance of packets destined to other non-
congested output ports. This problem can limit switch throughput to about 58% of its
peak value [17]. So, from the point of view of switch architecture, HOL blocking will
affect greatly to IQ switches and also to switches with queues at their input and output
ports (Combined Input and Output Queuing, CIOQ switches). These architectures are
different from that of traditional switches in communication networks, that uses queues
only at their output ports (Output Queuing, OQ switches). The OQ scheme has become
infeasible because requires the switch to operate at a much faster speed than the links
in order to handle all the possible packets concurrently arriving at the input ports1, and
link speed in current high-speed interconnects is on the order of Gbps.

So, as the switch architecture used in most recent designs follows the IQ or CIOQ
model, HOL blocking could be a serious problem in modern interconnects. In CIOQ
switches, HOL blocking can be reduced by increasing switch speedup. A switch with a
speedup of S can remove S packets from each input and deliver up to S packets to each
output within a time slot, where a time slot is the time between packet arrivals at input
ports. Note that OQ switches have a speedup of N while IQ switches have a speedup of
1. CIOQ switches have values of S between 1 and N . However, for larger values of S,
switches become too expensive, and practical values are between 1.5 and 2. Therefore,
the switch speedup increase is limited, and HOL blocking should be controlled by a
suitable congestion management mechanism.

It should be noted that although congestion management strategies for computer
networks are well known, congestion dynamics in networks (whether on-chip or off-
chip) for parallel computers is completely different from the one in computer networks
because packets are not dropped when congestion arises. Moreover, congestion is more
difficult to be solved due to the quick growth of congestion trees. Additionally, as con-
gestion has not been a problem until recently (networks were overdimensioned), there
are relatively few studies on congestion trees and their dynamics [27]. In fact, despite
the different queue architectures, it is common belief that congestion trees always grow
from the root to the leaves. This is true in networks with OQ switches, but this is not

1 Theoretically, a N × N OQ switch must work N times faster than the link speed.

268 P.J. Garcı́a et al.

the case for networks with CIOQ switches. In this case, as HOL blocking may occur
throughout the network, congestion trees may evolve in several ways.

Thus, we believe that an in-depth study of congestion trees and their dynamic evolu-
tion will help in finding better solutions for congestion management in interconnection
networks with CIOQ switches. In this paper we take on such challenge. We show that
congestion trees do not only grow from the root toward the leaves. There exist relatively
frequent conditions under which trees grow from the leaves to the root, cases where
several congestion trees grow independently and later merge, and even cases where a
congestion tree grows in such a way that completely overlaps with a subset of another
congestion tree while being independent from it. This complex evolution has some im-
plications on the way congestion management strategies should be designed. Moreover,
some design decisions (e.g., where congestion detection should be performed) also de-
pend on switch architecture, as a consequence of the way congestion trees evolve.

So, in addition to study the evolution of congestion trees, we present some enhance-
ments to a recently proposed congestion management mechanism [12]. These enhance-
ments will provide support for efficiently handling the situations described in the anal-
ysis of congestion dynamics.

To sum up, the main contributions of this paper are: 1) a detailed analysis of the
dynamics of congestion trees when using CIOQ switches, showing their complex evo-
lution, 2) the proposal of several enhancements to a previously proposed congestion
management mechanism so that it will efficiently handle the complex situations (we
also show the relationship between those enhancements and switch architecture), and
3) an evaluation of the impact on performance of the enhancements.

The rest of the paper is organized as follows. In Section 2, related work is presented.
In Section 3, the dynamic evolution of congestion trees is analyzed in depth. Then, in
Section 4, the proposed enhancements, based on the analysis of the dynamic evolution
of congestion trees, are presented. Evaluation results are presented in Section 5. Finally,
in Section 6, some conclusions are drawn.

2 Related Work

The formation of congestion (or saturation) trees on multistage interconnection net-
works (MINs) under certain traffic conditions has deserved the attention of researchers
for many years [27]. A large number of strategies have been proposed for controlling
the formation of congestion trees and for eliminating or reducing their negative effects.
Many of them consider congestion in multiprocessor systems, where saturation trees
appear due to concurrent requests to the same shared memory module. In [9], a taxon-
omy of hot-spot management strategies is proposed, dividing them into three categories:
avoidance-based, prevention-based and detection-based strategies. Although different
taxonomies are possible for other environments [40], the former classification is roughly
valid also for non-multiprocessor-oriented congestion management techniques.

Avoidance-based strategies require a previous planning in order to guarantee that
congestion trees will not appear. Some of these techniques are software-based [41,5],
while others are hardware-oriented [39]. In general, these strategies are related to qual-
ity of service requirements.

Dynamic Evolution of Congestion Trees 269

Prevention-based strategies control the traffic in such a way that congestion trees
should not happen. In general, decisions are made “on the fly”, based on limiting or
modifying routes or memory accesses. These techniques can be software-based [15] or
hardware-oriented [1,29].

When detection-based strategies are used, congestion trees may form, but they can
be detected in order to activate some control mechanism that should solve the problem.
Usually, this kind of mechanism requires some feedback information. For instance, it
is possible to measure the switch buffer occupancy [38,22] or the amount of memory
access requests [29] in order to detect congestion. Later, a notification is sent to the
sources injecting traffic or to the processors requesting memory accesses, in order to
cease or reduce their activity. Notifications could be sent to all the sources [36] or just
to those that cause the congestion [19]. Other mechanisms [8,23,3,4] notify congestion
just to the endpoints attached to the switch where congestion is detected.

Recently, a new mechanism have been proposed for networks with CIOQ switches
[12]. It is based on dynamically separating the traffic belonging to different congestion
trees, eliminating so the HOL blocking introduced by congestion. Additionally, many
proposals minimize or eliminate HOL blocking regardless of its cause. Some of them
focus on HOL blocking formed at the switch level [2,35,32,7,21] while others at the
entire network [6,18]. The use of non-blocking topologies [11] also eliminates HOL
blocking. Finally, other strategies like fully adaptive routing [10,20,14,37,31] or load
balancing techniques [13,31] may help to delay the appearance of congestion.

It is not in the scope of the present paper to discuss the advantages and drawbacks
of all these strategies. However, we must remark that, as far as we know, none of them
take into account the formation process of congestion trees. This paper is focused on
analyzing this important subject.

3 Dynamic Evolution of Congestion Trees

In this section we will analyze the different scenarios that may arise in the formation of
congestion trees for networks with CIOQ switches. In particular, we will focus on two
key aspects that greatly influence how congestion trees are formed. The first one is the
architecture of the switch whereas the second one is the traffic pattern. As we will show
later, the scenarios analyzed in this section must be properly handled by a congestion
control mechanism in order to be effective.

3.1 Traditional View

Traditionally, it has been thought that congestion trees form as follows: the root of the
congestion tree (e.g., an output port at some switch) becomes congested and, due to
the use of flow control, congestion spreads from the root to the leaves. However, this
situation happens only in a particular scenario that rarely occurs: when the different
traffic flows that form the tree join only at the root. Figure 1.a shows an example: five
flows form a congestion tree by meeting at the root switch. The sum of the injection
rate of all the flows is higher than the link bandwidth, thus a congestion tree is formed.
Before congestion occurs, all the queues used along the path followed by the flows are

270 P.J. Garcı́a et al.

��
��
��
��
��

��
��
��
��
��

1

2

new

root moves
downstream

��
��
��
��

��
��
��
��+ ingres congestion

egres congestion+
Switch Speedup = 2

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

+

+

+
+

root switch

+

(a)
(c)(b)

sw1

sw2

sw1

+

root switch

flows

sw3

sw4

sw1

sw2

sw3

sw4

root switch

Fig. 1. Different dynamic formations of trees. Speedup is two. (a) Traditional view about the
formation of a congestion tree, (b) Different locations (ingress and egress) where congestion is
detected for one tree, and (c) the root switch moves downstream.

nearly empty because there is enough bandwidth. However, when flows meet at the root
switch, the rate at which packets arrive is higher than the rate at which packets can be
transmitted through the output port. Thus, queues will start to fill at the root switch
(assuming an appropriate crossbar speedup, egress queues fill first, and later ingress
queues), and thus, congestion will begin. This situation will last until the queues at the
root switch fill up and, at this time, queues at the previous switches of the root switch
will start to queue packets (again, first at the egress queues and then at the ingress
queues). This is because the available bandwidth at the output port of the root switch
will be divided among the different flows and will be lower than the bandwidth required
by each flow. At the end, the congestion tree will grow from the root to the leaves.

Traditionally (and in the former example), it has also been assumed that in a CIOQ
switch with speedup, packets will start queuing at the egress ports when congestion
forms. However, as will be seen in the next section, this may not always be true.

3.2 Effect of Switch Architecture on the Dynamics

As mentioned above, the switch architecture, specifically the speedup, can alleviate the
possible HOL blocking at the input ports. However, it is not completely eliminated.
In particular, depending on the number of flows and the rate at which they arrive at a
switch, the formation of a congestion tree will be different. Figure 2.a shows an example
where two flows, injected at the full rate and headed to the same destination join at a
switch with no speedup. As the total reception is higher than the rate at which packets
are forwarded to the egress side, packets are queued at the ingress side. Thus, congestion
will occur at the ingress side of the switch. However, if speedup is used (Figure 2.b,
speedup of 2) congestion occurs at the egress side. As the number of flows arriving at

Dynamic Evolution of Congestion Trees 271

full rate full rate

full rate

congestion

(no speedup) (speedup S=2)

(a) (b) (c)

congestion

(speedup S=2)

congestion

Fig. 2. HOL blocking within a switch with different speedups and different flows

the root switch is equal to or less than the speedup, the switch can forward the flows to
the egress side at the same rate they are arriving. But, as the output port bandwidth is
half the internal switch bandwidth, packets start to queue at the egress side.

It should be noted that this situation depends on the number of incoming flows,
the rate at which they arrive, and the switch speedup. Although the speedup can be
increased, it drastically increases the switch cost. So, limited speedups are often used
(i.e. not higher than 2). As an example, Figure 2.c shows a case where three flows
headed to the same destination arrive at a switch with speedup of 2. The rate at which
packets arrive is higher than the rate at which they are forwarded to the egress side.
Thus, congestion arises at the ingress side, contrary to the common belief.

This effect may also occur at several points along a congestion tree. In Figure 1.b we
can observe a congestion tree formed by eight flows heading to the same destination.
Switch speedup is 2. Three flows merge at sw1, and other flows merge at different
points, finally meeting all together at the root switch. In this situation, at sw1 and sw2,
congestion first occurs at the ingress side. Once all the flows arrive at the root switch
they merge and congestion occurs again. However, in this case, congestion first occurs
at the egress side, and so happens at sw3 and sw4.

Therefore, the speedup affects the way congestion trees form. In particular, con-
gestion may first occur at ingress or egress side and, at the same time, different local
congestion spots may arise during the formation of the congestion tree. Although the
different local congestion spots can be initially viewed as independent congestion trees,
they end up being part of a single and larger congestion tree. Whether only the com-
plete congestion tree or each local congestion spot should be treated by a congestion
control mechanism will be discussed in section 4. This decision will significantly affect
the effectiveness of the congestion control mechanism.

3.3 Impact of Traffic Patterns on the Dynamics

In the previous scenario it was assumed that all the flows were injecting packets at the
same rate and started at the same time. This could be the case when executing a barrier

272 P.J. Garcı́a et al.

synchronization among different processes in a multiprocessor system. However, other
scenarios may arise where different flows contributing to the same congestion tree start
at different times and inject at different rates. This will lead to more sophisticated dyna-
mics in the formation of congestion trees. As an example, consider Figure 1.c where a
first congestion tree made up of three flows is created. These flows, headed to the same
destination, join together at the first stage of the network. Thus, the root switch is at
the first stage (as speedup of 2 is assumed, congestion first occurs at the ingress side).
Later, an additional flow headed to the same destination is injected. However, contrary
to the other flows, it merges with them at the second stage. Assuming that all the flows
are injecting at the full injection rate, the bandwidth at the egress port of sw1 must be
shared among the four flows. Thus, a new congestion is formed at the egress side of
sw1. In fact, two congestion trees have been created at different instants, but the first
one later becomes a subtree of a larger tree. This situation can be viewed as if the root
of the congestion tree had moved downstream in the network.

Another scenario occurs when two congestion trees overlap. This may happen quite
frequently in server systems with different disks placed close to each other. As each
accessed disk may produce a congestion tree, several trees may overlap.

When two congestion trees overlap, new dynamic behaviors appear. Figure 3.a
shows two congestion trees. The one plotted in solid lines (ct1) is formed first, whereas
the one plotted in dashed lines (ct2) appears later. In this situation, ct1 has its root
switch at sw1 and ct2 at sw2. However, when ct2 appears, a new congestion point is
located at sw3. This new congestion point can be viewed as a new root for both trees,
that will finally merge into one. However, as the congestion point has been formed by

���
���
���
���
���

���
���
���
���
���

+ ingres congestion

+ egres congestion

+
��
��
��
��
��

��
��
��
��
��

+

+

root switch
for ct1

root switch
for ct2

sw1

sw2

congestion tree 1 (ct1)
congestion tree 2 (ct2)

+

+

root switch
for ct2

+

−

root switch
for ct1

−

+

+

congestion tree 1 (ct1)
congestion tree 2 (ct2)

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

+

+

+

sw3

(a)

(b)

X

+

+

root switch

upstream
root moves

(c)

sw1

sw2

Fig. 3. Different dynamic formations of trees. Speedup is two. (a) two trees overlap and merge,
(b) two trees overlap but do not merge, and (c) the root switch moves upstream.

Dynamic Evolution of Congestion Trees 273

flows headed to different destinations, it could be considered as two different overlap-
ping congestion trees. Therefore, if congestion control mechanisms allocate resources
depending on packet destination, separate resources will be needed for each congestion
tree. On the other hand, if congestion within the network is going to be treated, this case
should be considered as two trees merging into one, thus saving some resources.

Another interesting situation occurs when two congestion trees overlap but do not
merge. For instance, once the congestion tree plotted in solid lines (ct1) in figure 3.b is
formed, a second one (ct2, plotted in dots) forms. A ct2 branch shares a set of network
resources with ct1. Thus, point X can be viewed as belonging to both trees. In this
situation, it could happen that a congestion control mechanism would consider traffic
addressed to ct2 passing through X as traffic belonging to ct1. As we will show later, a
correct differentiation of both trees will improve performance.

Finally, another case occurs when one or several branches of an already formed tree
disappear (sources injecting to the congested destination no longer send packets). This
case is shown in Figure 3.c. The flow plotted in dashed line disappears and the root
switch (sw2) no longer experiences congestion. This situation can be viewed as if the
root moves upstream the network to sw1. However, it should be noticed that while the
three flows arriving at sw1 keep injecting at the full rate, the queues used at sw2 will
remain full although it receives packets only from one input port.

To sum up, the root of a congestion tree may move downstream (by the addition
of new flows) or upstream (by the collapse of some branches). At the same time, con-
gestion trees may overlap at several network points without merging. And finally, a
congestion tree may be formed from local and transient congestion trees that will later
merge (due to the limited speedup). Therefore, for all of these cases some kind of ar-
chitectural support is needed in order to separate each congestion tree and to follow the
complex dynamics they may exhibit. As we will see in the evaluation section, keeping
track of their dynamics will ensure decisive benefits in terms of network performance.

4 Implications on the Design of Congestion Control Techniques

One of the main objectives of the paper is to develop new mechanisms able to keep
track of the complex dynamics of congestion trees in networks with CIOQ switches.
For this purpose, we present two enhancements to a previously proposed congestion
control mechanism referred to as RECN [12]. RECN focuses on eliminating the HOL
blocking induced by congestion trees. As we will see in the evaluation, the two new
enhancements will be key to achieve maximum performance and will allow RECN to
completely eliminate the HOL blocking induced by congestion trees. For the sake of
completeness we will first briefly describe RECN and later the two new enhancements.

4.1 RECN (Regional Explicit Congestion Notification)

RECN is based on the assumption that packets from non-congested flows can be mixed
in the same queue without significant interference among them. Therefore, RECN fo-
cuses on eliminating the HOL blocking introduced by congestion trees. This is accom-
plished by detecting congestion and dynamically allocating separate buffers for each

274 P.J. Garcı́a et al.

congestion tree. By completely eliminating HOL blocking, maximum performance is
achieved even in the presence of congestion trees.

RECN has been designed for PCI Express Advanced Switching2 (AS) [25,26]. Al-
though it could work under different technologies, RECN benefits from the routing
mechanisms found in AS. In particular, AS uses source deterministic routing. The AS
header includes a turn pool made up of 31 bits that contains all the turns (offset from
the incoming port to the outgoing port) for every switch along the path. An advantage
of this routing method is that it allows to address a particular network point from any
other point in the network. Thus, a switch, by inspecting the appropriate turnpool bits
of a packet, can know in advance if it will pass through a particular network point.

RECN adds, at every input and output port of a switch, a set of additional queues
referred to as Set Aside Queues (SAQs). SAQs are dynamically allocated and used to
store packets passing through a congested point (root of a congestion tree). To do this, a
CAM memory is associated to each set of SAQs. A CAM line contains the control info
required to identify a congested point and to manage the corresponding SAQ. Addition-
ally, one queue (referred to as normal queue) is used to store non congested packets.

RECN detects congestion only at switch egress ports. When a normal egress queue
receives a packet and fills over a given threshold, a notification is sent to the sender
ingress port indicating that the output port is congested. This notification includes the
routing information (a turnpool and the corresponding mask bits) to reach the congested
output port from the notified ingress port (only a turn). Upon reception of a notification,
each ingress port allocates a new SAQ and fills the corresponding CAM line with the
received turnpool and mask bits. From that moment, every incoming packet that will
pass through the congested point (easily detected from the packet turnpool) will be
mapped to the newly allocated SAQ, thus eliminating the HOL blocking it may cause.
If an ingress SAQ becomes subsequently congested, a new notification will be sent
upstream to some egress port that will react in the same way, allocating an egress SAQ,
and so on. As the notifications go upstream, the information indicating the route to the
congested point is updated accordingly, in such a way that growing sequences of turns
(turnpools) and mask bits are stored in the CAM lines. So, the congestion detection is
propagated through all the branches of the tree.

To guarantee in order delivery, whenever a new SAQ is allocated, forwarding pack-
ets from that queue is disabled until the last packet of the normal queue (at the moment
of the SAQ allocation) is forwarded. This is implemented by a simple pointer associated
to the last packet in the normal queue and pointing to the blocked SAQ.

RECN implements for each individual SAQ a special Xon/Xoff flow control, that
follows the Stop & Go model. This mechanism is different from the credit-based flow
control used for normal queues, that considers all the unused space of the port data
memory available for each individual queue. If these “global” credits scheme would be
used for SAQs, a congested flow could fill the whole port memory very fast, whereas
the Xon/Xoff scheme guarantees that the number of packets in a SAQ will be always
below a certain threshold.

2 AS is an open standard for fabric-interconnection technologies developed by the ASI Special
Interest Group. It is based on PCI Express technology, extending it to include other features.
ASI is supported by many leader enterprises.

Dynamic Evolution of Congestion Trees 275

RECN keeps track (with a control bit on each CAM line) of the network points that
are leaves of a congestion tree. Whenever a SAQ with the leaf bit set to one empties,
the queue is deallocated and a notification is sent downstream, repeating the process
until the root of the congestion tree is reached. For a detailed description of the RECN
mechanism, please refer to [12].

4.2 Proposed Enhancements

In this section two enhancements to RECN are proposed. They will allow RECN to
keep track of the dynamics of congestion trees, and thus, to exhibit significantly better
performance.

The first enhancement is allowing RECN to detect congestion at switch ingress
ports. RECN defines SAQs at ingress and egress ports, but it only detects congestion at
egress ports (it is based on the belief that congestion first occurs at egress side). Thus,
ingress ports SAQs are allocated only when receiving notifications. We have previously
shown that congestion may first occur at ingress ports (for instance, in switches without
speedup). In these cases, RECN never detects congestion at the root. Instead, it detects
congestion at the immediate upstream switches, but only when the root ingress queues
are full, preventing the packet injection from those switches. So, RECN will not react
quickly to eliminate HOL blocking at an important part of the tree.

In order to detect congestion at the ingress side, a different detection mechanism
must be used. When detecting congestion at the egress side, the congestion point is the
output port by itself. However, when an ingress normal queue fills over a threshold, it
is because packets requesting a certain output port are being blocked. As packets in the
ingress queue can head to different output ports, it is not trivial to decide which one is
the congested output port. In response to this requirement, we propose to replace the
normal queue at each ingress port by a set of small buffers (referred to as detection
queues). So, at ingress ports, the memory is now shared by detection queues and SAQs.
The detection queues are structured at the switch level: there are as many detection
queues as output ports in the switch, and packets heading to a particular output port
are directed to the associated detection queue3. By doing this, when a detection queue
fills over a given threshold, congestion is detected, and the output port causing the
congestion is easily computed as the port associated with that detection queue4. Once
congestion is detected at an ingress port, a new SAQ is allocated at this port, and the
turnpool identifying the output port causing congestion is stored in the CAM line. The
detection queue where congestion is detected and the SAQ allocated are swapped. As
the new SAQ can now be considered to be congested, a notification is sent upstream.
Figure 4 shows the proposed mechanism.

The second enhancement is related to the actions taken upon reception of notifica-
tions. RECN does not allocate SAQs for all the notifications received. This is done in
order to ensure that no out of order packet delivery is introduced. Figure 5.a shows an
example where RECN does not allocate a SAQ when receiving a notification. First, sw1

3 Note that, if there were no SAQs, the memory at ingress ports would follow a Virtual Output
Queuing scheme at switch level. Of course, SAQs make a difference.

4 There are other ways of detecting, at ingress sides, the flows contributing to congestion. De-
tection queues minimize congestion detection latency, but their use is not mandatory.

276 P.J. Garcı́a et al.

Port 4

Port 5

Port 6

Port 7

turn=4

turn=5

turn=6

turn=7

Port 4

Port 5

Port 6

Port 7

��������

CAM Lines

4

Threshold

Port 0

Port 1

Port 2

Port 3

Port 1

Port 2

Port 3

notification
Congestion

CAM Lines

Threshold

SAQs

turn=4

turn=6
turn=5

turn=7

SAQs

DetectionDetection
Queues Queues

Port 0

(b)(a)

Fig. 4. Mechanism for detecting and handling congestion at the ingress side: (a) Queue status at
the detection moment (b) Queue status after detection

normal queue
A

SAQs CAM lines

notification
specific
more

A
B

by RECN
notification discarded

(a)

sw 1

sw 2

sw 3

A

normal queue

SAQs CAM lines

A
B

(b)

sw 1

sw 2

B

notification
specific

less

sw 3

Fig. 5. Basic RECN treatment for (a) more specific and (b) less specific notifications

is notified that point A is congested. Then, it allocates a new SAQ for that congested
point and packets going through A will be stored from that moment in that SAQ. Later,
point B becomes congested at sw3 and notifications are sent upstream, reaching sw1.
This notification is referred to as being a more specific notification (as B is further away
than A). Notice that when the notification arrives to sw1 it may happen that packets
going through B are stored in the SAQ associated to A (as packets have to pass through
A before reaching B). If sw1 allocates a new SAQ for B, it may happen that packets
later stored in that SAQ could leave the switch before the packets stored at the SAQ
associated to A (out of order delivery).

Notice that this fact can lead to RECN to introduce HOL blocking. Indeed, flows
not belonging to the first tree (traffic adressed to point B) passing trough point A will

Dynamic Evolution of Congestion Trees 277

be mapped to the same SAQ (the one associated to A) that flows belonging to the con-
gestion tree. Thus, RECN does not support the downstream tree movement. Also the
situation where a congestion tree forms from leaves to root will not be correctly treated.

Figure 5.b shows another situation. In this case sw1, having a SAQ allocated for
point B, receives a less specific notification (being point A congested). This can be
related to the formation of an overlapping congestion tree. In this case, RECN accepts
the notification and allocates a new SAQ for point A. In this situation, an arriving packet
will be stored in the SAQ whose associated turnpool matches in more turns the packet
turnpool. Thus, incoming packets passing trough A and B will be mapped to the SAQ
allocated for B, and packets passing through A but not through B will be mapped to
the SAQ allocated for A. Notice that in this situation no out of order delivery may be
introduced as already stored packets passing through A but not trough B are not mapped
to the SAQ asociated to B (they were stored on the normal queue).

Thus, the proposal is to accept all the notifications regardless whether they are more
or less specific. In order to deal with out of order issues, when a new SAQ is allocated
due to a more specific notification, it must be blocked (must not send packets) until all
the packets stored in the SAQ associated to the less specific notification (when the new
SAQ is allocated) leave the queue. This can be accomplished by placing in the “old”
SAQ a pointer to the new allocated SAQ .

In order to foresee the potential of the proposed enhancements, Figures 6.a and 6.b
show how the original (or “basic”) RECN and the enhanced RECN mechanisms de-
tect congestion trees. These figures reflect simulation results when a congestion tree is
formed by eight sources injecting packets to the same destination (hot-spot) at the full
rate of the link. All the sources start sending packets at the same time. Switch speedup
has been set to 1.5. In both figures, dots indicate the points (ingress or egress) consid-
ered by the mechanism as congestion roots after the tree is formed. The thick arrows
indicate the paths followed by congestion notifications (RECN messages) from conges-
tion points, thus indicating where SAQs are allocated for a particular congestion point.

host 20

host 36

host 24

host 44

host 60

host 11

host 15

host 32

host 56

SW 5

SW 2

SW 9

SW 15

SW 11

SW 31

SW 24

SW 35

SW 19

SW 16

SW 33

SW 20

SW 27

SW 14

SW 6

SW 3

SW 44

SW 8SW 28

(a) Basic RECN

host 20

host 36

host 24

host 44

host 60

host 11

host 15

host 32

host 56

SW 5

SW 2

SW 9

SW 15

SW 11

SW 31

SW 24

SW 35

SW 19

SW 16

SW 33

SW 20

SW 27

SW 14

SW 6

SW 3

SW 44

SW 28 SW 8

(b) Enhanced RECN

Fig. 6. Congestion tree detection with different RECN versions

278 P.J. Garcı́a et al.

As can be observed, with the basic RECN mechanism, one “real” congestion tree
is viewed as several subtrees. In particular, seven subtrees are formed, all of them with
their roots at egress sides of switches. However, the enhanced RECN mechanism cor-
rectly identifies the congestion tree. At the end, only one tree is detected and the root is
located at the egress side of switch 8, matching so the real congestion tree.

Although both schemes end up detecting the same congestion (through one tree or
several ones), detecting the correct one has powerful benefits. In particular, for the basic
RECN mechanism, HOL blocking is not correctly eliminated. As an example, imagine
traffic not belonging to the congestion tree that arrives at switch 5 and is passing through
some of the detected intermediate congestion points. Those packets will be mapped
to the same SAQ used to hold packets addressed to the congested destination, thus
introducing massive HOL blocking. As the congestion tree grows in the number of
stages, the number of intermediate detected congestion points will increase and, then,
more HOL blocking will be introduced. On the other hand, the enhanced mechanism
will use a SAQ in all the switches (on every attached port) to store packets exactly
destined to the congestion root. Thus the rest of flows will be mapped to the detection
queues, and so HOL blocking at the congestion tree will be completely eliminated.

It has to be noted that enabling congestion detection at switch ingress sides also
has benefits in the mechanism response. In the basic RECN, intermediate output ports
(detected as congested) start to congest only when the ingress queue at the downstream
switch totally fills up with congested packets. Thus, at the time congestion is detected
some ingress side queues are totally full.

5 Performance Evaluation

In this section we will evaluate the impact of the proposed enhancements over RECN
on the overall network performance in different scenarios of traffic load and switch
architecture. For this purpose we have developed a detailed event-driven simulator that
allows us to model the network at the register transfer level. Firstly, we will describe
the main simulation parameters and the modeling considerations we have used in all the
evaluations. Secondly, we will analyze the evaluation results.

5.1 Simulation Model

The simulator models a MIN with switches, end nodes, and links. To evaluate the dif-
ferent congestion manegement techniques, we have used several bidirectional MINs
(BMINs) shown in Table 1. 8-port switches are used and the interconnection pattern is
the perfect shuffle pattern.

In all the experiments deterministic routing has been used. Memories of 32KB have
been modeled for both input and output ports of every switch. At each port, the memory
is shared by all the queues (normal or detection queues and SAQs) defined at this port at
a given time, in such a way that memory cells are dynamically allocated (or deallocated)
for any queue when necessary. For the basic RECN mechanism only one normal queue
and a maximum of eight SAQs are defined at ingress and egress ports. However, for
the enhanced RECN (RECN with the two proposed enhancements) the normal queue at
ingress ports has been divided in eight detection queues.

Dynamic Evolution of Congestion Trees 279

Table 1. Traffic corner cases evaluated

normal traffic congestion tree
Traffic network # srcs dest injection # srcs dest injection start end congestion
case rate rate time time type
#1 64 × 64 75% rand 50% 25% 32 100% variable variable incremental
#2 64 × 64 75% rand 100% 25% 32 100% variable variable incremental
#3 64 × 64 75% rand 50% 25% 32 100% 800 µs 1100 µs sudden
#4 64 × 64 75% rand 100% 25% 32 100% 800 µs 1100 µs sudden

6.25% 32 100% 800 µs 1100 µs sudden
#5 512 × 512 75% rand 100% 6.25% 201 100% 800 µs 1100 µs sudden

6.25% 428 100% 800 µs 1100 µs sudden
6.25% 500 100% 800 µs 1100 µs sudden
6.25% 32 100% 800 µs 1100 µs sudden

#6 2048 × 2048 75% rand 100% 6.25% 515 100% 800 µs 1100 µs sudden
6.25% 1540 100% 800 µs 1100 µs sudden
6.25% 2000 100% 800 µs 1100 µs sudden

At switches, packets cross from any input queue to any output one through a multi-
plexed crossbar modeled with two options: no speedup (link and crossbar bandwidth is
8Gbps), or 1.5 speedup (link bandwidth is 8Gbps, crossbar bandwidth is 12Gbps).

End nodes are connected to switches using Input Adapters (IAs). Every IA is mod-
eled with a fixed number of N message admitance queues (where N is the total number
of end nodes), and a variable number of injection queues, that follow a scheme similar
to that of the output ports of a switch. When a message is generated, it is stored in the
admitance queue assigned to its destination, and is packetized before being transferred
to an injection queue. We have used 64-byte packets.

We have modeled in detail the two versions of RECN: 1) Basic RECN: detection
only at egress side and more restrictive notifications discarded, and 2) Enhanced RECN:
detection at ingress ports enabled and more restrictive notifications accepted, preserving
in-order delivery. For comparison purposes we also evaluate the Virtual Output Queuing
(VOQ) mechanism at the switch level [2]. This method will be referred to as VOQsw.

5.2 Traffic Load

In order to evaluate the RECN mechanisms, two different scenarios will be analyzed.
First, well-defined synthetic traffic patterns will be used. Table 1 shows the traffic pa-
rameters of each traffic case. For each case, there will be 75% of sources injecting traffic
to random destinations during all the simulation period. These nodes will inject traffic
at different rates of the link depending on the traffic case. In all the cases, the rest of
sources (25%) will inject traffic at the full rate to the same destination (medium net-
works, traffic cases #1 to #4) or to four different destinations (large networks, traffic
cases #5 and #6). Thus, congestion trees will be formed. When sudden congestion is
used, all the congestion sources start injecting at the same time. In the case of incre-
mental congestion, congestion sources start to inject one after one at intervals of 20 µs.
Congestion sources inject also during 300 µs in the incremental configuration.

280 P.J. Garcı́a et al.

As a second scenario we will use traces. The I/O traces used in our evaluations were
provided by Hewlett-Packard Labs [33]. They include all the I/O activity generated
from 1/14/1999 to 2/28/1999 at the disk interface of the cello system. They provide
information both for the requests generated by the hosts and the answers generated by
the disks. As the traces are six years old, and the technology grows quickly, allowing
the use of faster devices (hosts and storage devices) that generate higher injection rates,
we have applied a time compression factor to the traces.

5.3 Performance Comparison

Figure 7 shows results for basic RECN, enhanced RECN and VOQsw, for the traffic
cases #1 and #2. Speedup of 1.5 is used. In these two cases, the congestion tree is
formed by the incremental addition of flows, and the basic RECN mechanism achieves
roughly the same performance that as enhanced RECN. However, there are significant
differences. First, basic RECN exhibits an oscilation in the throughput achieved, due to
the fact that HOL blocking is not completely eliminated. The enhanced RECN mecha-
nism achieves a smooth performance. In the traffic case #1, sources injecting to random
destinations are injecting at half the link rate. It can be observed that when conges-
tion tree is forming, no strong degradation is experienced. However, for traffic case #2,
sources injecting random traffic are injecting at the full injection rate. It can be noticed
that the basic RECN mechanism starts to degrade performance as throughput drops
from 44 bytes/ns to 37 bytes/ns. However, when congestion tree disapears, it recov-
ers, although exhibiting a significant oscillation. On the other hand, enhanced RECN
behaves optimally as it tolerates the congestion tree with no performance degradation.

Taking the throughput results of VOQsw as a reference, it can be deduced that both
RECN versions handle the congestion caused by traffic case #2 very well, whereas
the performance achieved by VOQsw is quite poor (throughput drops from 44 to 25
bytes/ns and does not recover even when the congestion tree disappears). Therefore,
we can consider that traffic case #2 can cause strong HOL blocking in the network.
However, taking into account the performance of basic and enhanced RECN, we can
conclude that the use of any of them virtually eliminates HOL blocking.

 18

 20

 22

 24

 26

 28

 30

 32

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

Enh. RECN

Basic RECN

VOQsw

(a) Traffic case #1

 30

 35

 40

 45

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

Enh. RECN

Basic RECN

VOQsw

(b) Traffic case #2

Fig. 7. Network throughput for traffic cases #1 and #2. Speedup is 1.5

Dynamic Evolution of Congestion Trees 281

 4

 6

 8

 10

 12

 14

 16

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

Enhanced RECN

Basic RECN VOQsw

(a) No Speedup

 4

 6

 8

 10

 12

 14

 16

 18

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

Enhanced RECN Basic RECN

VOQsw

(a) Speedup 1.5

Fig. 8. Network throughput for SAN traffic

Figure 8 shows results for the SAN traces, when using no speedup (Figure 8.a) and
when using 1.5 speedup (Figure 8.b). As can be noticed, the basic RECN achieves worse
performance when no speedup is used, whereas the enhanced RECN works equally
with or without speedup. This result shows that it completely eliminates HOL blocking
at the ingress ports. When using speedup, most of the congestion is roughly moved to
the egress queues and, thus, the basic RECN behaves as the enhanced RECN. Thus,
when no speedup is available, enhanced RECN makes a difference.

From these two previous results (traffic cases #1 and #2 and SAN traffic) it can be
deduced that basic RECN behaves acceptably with moderated traffic and when switches
with speedup are available. However, these two conditions will not be always true. Fig-
ure 9 shows performance results when no speedup is available and a sudden congestion
tree forms. In Figure 9.a sources injecting random traffic inject at the half of the link
rate (traffic case #3) whereas in Figure 9.b they inject at the full link rate (traffic case
#4). As can be observed, the basic RECN suffers strong degradation in both cases. Net-
work throughput drops from 25 bytes/ns to 10 bytes/ns (60% drop) for traffic case #3
and from 44 bytes/ns to 10 bytes/ns (77% drop) for traffic case #4. It can be noticed
also that basic RECN recovery time is quite excesive for traffic case #4 (indeed, it never

 10

 15

 20

 25

 30

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

Enhanced RECN

Basic RECN

VOQsw

(a) Traffic case #3

 10

 15

 20

 25

 30

 35

 40

 45

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

Enhanced RECN
Basic RECN

VOQsw

(b) Traffic case #4

Fig. 9. Network Throughput for traffic cases #3 and #4. No speedup

282 P.J. Garcı́a et al.

 16

 18

 20

 22

 24

 26

 28

 30

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

Enh. RECN

Basic RECN

VOQsw

(a) Traffic case #3

 25

 30

 35

 40

 45

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

Enhanced RECN

Basic RECN

VOQsw

(b) Traffic case #4

Fig. 10. Network Throughput for traffic cases #3 and #4. Speedup is 1.5.

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

Enhanced RECN

Basic RECN

VOQsw

(a) Traffic case #5, 512 × 512 network

 200

 400

 600

 800

 1000

 1200

 1400

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

Enhanced RECN

Basic RECN

VOQsw

(b) Traffic case #6, 2048 × 2048 network

Fig. 11. Network Throughput for traffic cases #5 and #6. Speedup is 1.5.

fully recovers). On the other hand, the enhanced RECN mechanism is able to filter the
inefficiencies induced by the absence of speedup and by the dynamics of congestion
trees, achieving maximum performance. Thus, it virtually eliminates HOL blocking.

Figure 10 also shows performance results for a sudden congestion tree formation,
when switch speedup is 1.5. Again, network throughput for traffic cases #3 and #4
are shown in Figure 10.a and Figure 10.b, respectively. With both traffics, the behav-
ior of the basic RECN mechanism is better than in the case of no-speedup switches,
due to the fact that congestion tends to appear at egress sides. However, the basic
RECN mechanism still exhibits worse performance than the enhanced one. Whereas
the enhanced RECN keeps almost constantly network throughput at maximum, the ba-
sic RECN troughput drops significantly (33% for traffic case #3 and 45% for traffic case
#4) and exhibits strong oscillations. Moreover, when sources inject at full rate (traffic
case #4), network troughput does not completely recover from the drop. When the con-
gestion tree disappears, the basic RECN performance is far better than the VOQsw one.

Figure 11 shows performance results for basic RECN and enhanced RECN when
used on larger networks. Figure 11.a corresponds to a 512 × 512 MIN network (512
hosts, 640 switches), whereas Figure 11.b corresponds to a 2048× 2048 MIN network
(2048 hosts, 3072 switches). In both cases, switch speedup of 1.5 has been considered.
Due to the big size of these networks, instead of producing just one tree, four congestion

Dynamic Evolution of Congestion Trees 283

trees are suddenly formed by sources injecting at the full link rate (traffic cases #5 and
#6, respectively). It can be seen in the figures that the differences on the performance
of basic and enhanced RECN grow with network size. The enhanced version keeps
network throughput close to the maximum independently of network size, whereas the
basic RECN throughput drops dramatically and practically does not recover.

6 Conclusions

We have analyzed the complex nature of the formation of congestion trees in networks
with CIOQ switches. We have presented examples showing that, contrary to the com-
mon belief, a congestion tree can grow in a variety of ways, depending on switch archi-
tecture (crossbar speedup) and traffic load. Also, we have analyzed the importance of
considering such variety when designing congestion management strategies for lossless
networks, specifically those strategies focused on eliminate HOL blocking. Moreover,
taking into account the previous analysis, we have proposed two significant enhance-
ments to a recently proposed congestion management mechanism (RECN) in the aim
of handling congestion trees regardless the way they form. The comparative results pre-
sented in the paper show that network performance degrades dramatically in several
scenarios when using basic RECN, whereas the enhanced RECN is able to keep almost
maximum performance in all the cases. So, we can conclude that the proposed enhance-
ments allow RECN to correctly eliminate the HOL blocking produced by congestion
trees independently of the way they grow.

References

1. G. S. Almasi, A. Gottlieb, “Highly parallel computing”, Ed. Benjamin-Cummings Publishing
Co., Inc., 1994.

2. T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-Speed Switch Scheduling for Local-
Area Networks”, ACM Trans. on Computer Systems, vol. 11, no. 4, pp. 319–352, Nov. 1993.

3. E. Baydal, P. Lopez and J. Duato, “A Congestion Control Mechanism for Wormhole Net-
works”, in Proc. 9th. Euromicro Workshop Parallel & Distributed Processing, pp. 19–26,
Feb. 2001.

4. E. Baydal and P. Lopez, “A Robust Mechanism for Congestion Control: INC”, in Proc. 9th
International Euro-Par Conference, pp. 958–968, Aug. 2003.

5. R. Bianchini, T. J. LeBlanc, L. I. Kontothanassis, M. E. Crovella,“Alleviating Memory Con-
tention in Matrix Computations on Large-Scale Shared-Memory Multiprocessors”, Technical
report 449, Dept. of Computer Science, Rochester University, April 1993.

6. W. J. Dally, P. Carvey, and L. Dennison, “The Avici Terabit Switch/Router”, in Proc. Hot
Interconnects 6, Aug. 1998.

7. W. J. Dally, “Virtual-channel flow control”, IEEE Trans. on Parallel and Distributed Systems,
vol. 3, no. 2, pp. 194–205, March 1992.

8. W. J. Dally and H. Aoki, “Deadlock-Free Adaptive Routing in Multicomputer Networks
Using Virtual Channels”, IEEE Trans. on Parallel and Distributed Systems, vol. 4, no. 4, pp.
466–475, April 1993.

9. S. P. Dandamudi, “Reducing Hot-Spot Contention in Shared-Memory Multiprocessor Sys-
tems”, in IEEE Concurrency, vol. 7, no 1, pp. 48–59, January 1999.

284 P.J. Garcı́a et al.

10. J. Duato, “A New Theory of Deadlock-Free Adaptive Routing in Wormhole Networks”, IEEE
Trans. on Parallel and Distributed Systems, vol. 4, no. 12, pp. 1320–1331, Dec. 1993.

11. J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection Networks: An Engineering Ap-
proach (Revised printing), Morgan Kaufmann Publishers, 2003.

12. J. Duato, I. Johnson, J. Flich, F. Naven, P.J. Garcia, T. Nachiondo, “A New Scalable and
Cost-Effective Congestion Management Strategy for Lossless Multistage Interconnection
Networks”, in Proc. 11th International Symposium on High-Performance Computer Archi-
tecture (HPCA05), pp. 108–119, Feb. 2005.

13. D. Franco, I. Garces, and E. Luque, “A New Method to Make Communication Latency Uni-
form: Distributed Routing Balancing”, in Proc. ACM International Conference on Super-
computing (ICS99), pp. 210–219, May 1999.

14. P. T. Gaughan and S. Yalamanchili, “Adaptive Routing Protocols for Hypercube Intercon-
nection Networks”, IEEE Computer, vol. 26, no. 5, pp. 12–23, May 1993.

15. W.S.Ho, D.L.Eager, “A Novel Strategy for Controlling Hot Spot Contention”, in Proc. Int.
Conf. Parallel Processing, vol. I, pp. 14–18, 1989.

16. InfiniBand Trade Association, “InfiniBand Architecture. Specification Volume 1. Release
1.0”. Available at http://www.infinibandta.com/.

17. M. Karol, M. Hluchyj, and S. Morgen, “Input versus Output Queueing on a Space Division
Switch”, in IEEE Transactions on Communications, vol. 35, no. 12, pp.1347-1356, 1987.

18. M. Katevenis, D. Serpanos, E. Spyridakis, “Credit-Flow-Controlled ATM for MP Inter-
connection: the ATLAS I Single-Chip ATM Switch”, in Proc. 4th Int. Symp. on High-
Performance Computer Architecture, pp. 47–56, Feb. 1998.

19. J. H. Kim, Z. Liu, and A. A. Chien, “Compressionless Routing: A Framework for Adaptive
and Fault-Tolerant Routing”, IEEE Trans. on Parallel and Distributed Systems, vol. 8, no. 3,
1997.

20. S. Konstantinidou and L. Snyder, “Chaos Router: Architecture and Performance”, in Proc.
18th International Symposium on Computer Architecture, pp. 79–88, June 1991.

21. V. Krishnan and D. Mayhew, “A Localized Congestion Control Mechanism for PCI Express
Advanced Switching Fabrics”, in Proc. 12th IEEE Symp. on Hot Interconnects, Aug. 2004.

22. J. Liu, K. G. Shin,C. C. Chang, “Prevention of Congestion in Packet-Switched Multistage
Interconnection Networks”, IEEE Transactions on Parallel Distributed Systems, vol. 6, no.
5, pp. 535–541, May 1995.

23. P. Lopez and J. Duato, “Deadlock-Free Adaptive Routing Algorithms for the 3D-Torus: Lim-
itations and Solutions”, in Proc. Parallel Architectures and Languages Europe 93, June 1993.

24. Myrinet 2000 Series Networking. Available at http://www.
cspi.com/multicomputer/products/2000 series networking/ 2000 networking.htm.

25. “Advanced Switching for the PCI Express Architecture”. White paper. Available at
http://www.intel.com/technology/pciex press/devnet/AdvancedSwitching.pdf

26. “Advanced Switching Core Architecture Specification”. Available at http://www.asi-
sig.org/specifications for ASI SIG.

27. G. Pfister and A. Norton, “Hot Spot Contention and Combining in Multistage Interconnect
Networks”, IEEE Trans. on Computers, vol. C-34, pp. 943–948, Oct. 1985.

28. Quadrics QsNet. Available at http://doc.quadrics.com
29. S. L. Scott, G. S. Sohi,“The Use of Feedback in Multiprocessors and Its Application to Tree

Saturation Control”, IEEE Transactions on Parallel Distributed Systems, vol. 1, no. 4, pp.
385–398, Oct. 1990.

30. L. Shang, L. S. Peh, and N. K. Jha, “Dynamic Voltage Scaling with Links for Power Opti-
mization of Interconnection Networks”, in Proc. Int. Symp. on High-Performance Computer
Architecture, pp. 91–102, Feb. 2003.

31. A. Singh, W. J. Dally, B. Towles, A. K. Gupta, “Globally Adaptive Load-Balanced Routing
on Tori”, Computer Architecture Letters, vol. 3, no. 1, pp. 6–9, July 2004.

Dynamic Evolution of Congestion Trees 285

32. A. Smai and L. Thorelli, “Global Reactive Congestion Control in Multicomputer Networks”,
in Proc. 5th Int. Conf. on High Performance Computing, 1998.

33. SSP homepage, http://ginger.hpl.hp.com/research/itc/csl/ssp/
34. J. M. Stine and N. P. Carter, “Comparing Adaptive Routing and Dynamic Voltage Scaling for

Link Power Reduction”, Computer Architecture Letters, vol. 3, no. 1, pp. 14–17, July 2004.
35. Y. Tamir and G. L. Frazier, “Dynamically-Allocated Multi-Queue Buffers for VLSI Com-

munication Switches”, IEEE Trans. on Computers, vol. 41, no. 6, June 1992.
36. M. Thottethodi, A. R. Lebeck, S. S. Mukherjee, “Self-Tuned Congestion Control for Mul-

tiprocessor Networks”, in Proc. Int. Symp. High-Performance Computer Architecture, Feb.
2001.

37. M. Thottethodi, A. R. Lebeck, S. S. Mukherjee, “BLAM: A High-Performance Routing Al-
gorithm for Virtual Cut-Through Networks”, in Proc. Int. Parallel and Distributed Process-
ing Symp. (IPDPS), April 2003.

38. W. Vogels et al., “Tree-Saturation Control in the AC3 Velocity Cluster Interconnect”, in Proc.
8th Conference on Hot Interconnects, Aug. 2000.

39. M. Wang, H. J. Siegel, M. A. Nichols, S. Abraham, “Using a Multipath Network for Reduc-
ing the Effects of Hot Spots”, IEEE Transactions on Parallel and Distributed Systems, vol.
6, no.3, pp. 252–268, March 1995.

40. C. Q. Yang and A. V. S. Reddy, “A Taxonomy for Congestion Control Algorithms in Packet
Switching Networks”, IEEE Network, pp. 34–45, July/Aug. 1995.

41. P. Yew, N. Tzeng, D. H. Lawrie,“ Distributing Hot-Spot Addressing in Large-Scale Multi-
processors”, IEEE Transactions on Computers, vol. 36, no. 4, pp. 388–395, April 1987.

	Introduction
	Related Work
	Dynamic Evolution of Congestion Trees
	Traditional View
	Effect of Switch Architecture on the Dynamics
	Impact of Traffic Patterns on the Dynamics

	Implications on the Design of Congestion Control Techniques
	RECN (Regional Explicit Congestion Notification)
	Proposed Enhancements

	Performance Evaluation
	Simulation Model
	Traffic Load
	Performance Comparison

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

