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Abstract

Network performance analysis relies mainly on two models: a workload
model and a performance model. This paper proposes to use histograms
for characterising the arrival workloads and a performance model based on
a stochastic process. This new stochastic process works directly with his-
tograms using a set of specific operators. The result is the buffer occupancy
distribution. The loss rate and network delay distribution can be obtained
using this distribution. Three traffic models are proposed: the first model (the
HD model) is a basic histogram model that is compact and reflects only first
order statistics. The other two captures second order statistics: the (HD(N)

model) is based on obtaining several histograms using different time scales and
the (the HD(H) model) is based on the Hurst parameter and it is long-range
dependent.

This method is evaluated using several real traffic network workloads and
the results show that the model is very accurate. The model forms an excellent
basis for a decision support tool to allow system architects to predict the
behavior of computer networks.

KEYWORDS: Network Performance Analysis, Traffic Modelling,
Stochastic Analysis.

1 Introduction

Network performance relies mainly on routers’ queues (buffers). Therefore, queue-
ing analysis plays a crucial role in their design and performance. In the simplest
queueing analysis, a traffic is fed into a single-server queue of limited capacity with
a given service rate, and we wish to determine information about the queue utiliza-
tion. Systems performance analysis relies mainly on two models: a workload model
and a performance model. The workload model capture the resource demands and
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workload intensity characteristics. This model must capture the static and dynamic
behavior of the real load and it must be compact and accurate. The performance
model is used to predict the performance of a system as a function of the system
description and the workload model.

Understanding the nature of the traffic is critical to properly model a computer
network system. There has been a considerable amount of work on traffic charac-
terisation in the literature [1]. In classic networks, the Poisson process has since
long been used for call arrivals, because calls are generated independently from
each other. However, Internet traffic does not fit into this description. Two pio-
neering articles [2] [3] showed two properties: i) self-similarity : counts of packet
arrivals in equally-spaced intervals of time are long-range time dependent and have
a large coefficient of deviation, and ii) heavy tailed : packet inter-arrival have a
marginal distribution that has a longer tail than the exponential. Recently, studies
has shown that this arrival process tends toward Poisson as load increases [4] [5].
Several distributions were proposed to fit these traffic characteristics. The Pareto
and Weibull distributions are often used in order to reflect the heavy-tailed distri-
bution. The self-similarity property can be modeled by an aggregate of multiple
heavy-tailed ON/OFF sources. More complex models are based on fractional Gaus-
sian noise (fGN), fractional autoregressive integrate moving average (fARIMA) and
wavelets [6].

Several queueing analysis methods have been proposed to model and obtain
performance parameters [7]: Markov Modulated Poisson Process (MMPP) [8, 9],
Switched Batch Bernouilli Process (SBBP) [10] or Discrete Gaussian Models [1].
There are several practical problems with these models. First, we must fit the traffic
with the model. Nevertheless, the problem is that when the number of parameters
are high the model usually become intractable, so we must use few parameters and
this implies losing precision. Second, most of the papers deal with the tail probability
(or overflow probability) P (Q > t) rather than the loss probability. Nevertheless,
real networks have finite buffer so it is necessary to study the loss probability in
finite buffer systems (PL(x)). In infinite queue models the loss probability is often
approximated as PL(x) ≈ P (Q > x). However, this approximation usually provides
an upper bound (sometimes a very poor bound) to the loss probability [11]. For this
reason, the authors of [11] presented an estimation for the loss probability based on
the tail probability. Therefore, for network performance evaluation is better to use
a model with finite buffer.

Several papers have proposed the use of histograms as the basis for performance
models. The Histogram Model [12,13], was introduced by Skelly to predict buffer oc-
cupancy and loss rate for multiplexed streams. These works use an analysis method
based on a M/D/1/N queueing system. The number of ATM cells generated dur-
ing a frame period is approximated to a Poisson distribution with a given rate λ.
For a given video sequence, λ is modelled as a histogram. The buffer occupancy is
calculated by solving the M/D/1/N system as a function of λ and then weighting
the solutions according to the histogram probabilities. These methods yields good
results with a reduced number of cells in the buffer, but the inaccuracy increases
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with the number of cells. Another histogram-based performance analysis was pre-
sented in [14]. The method is based on a modification of the MVA (Mean Value
Analysis) algorithm for resolving Queueing Network Models (QNM). The drawback
of these models is that they resolve for each value of the histograms classes indepen-
dently (using M/D/1/N or MVA), not taking into account the dependencies between
the histogram classes. A more complex approach is the distrete time SBBP/G/1
queue [10]. The SBBP process is characterized by a probability generating function
(pgf) and two states. The system is resolved only for the infinite capacity queue
case. This model has two drawbacks when it is applied to real-traffic modeling: the
complexity of definining the pgf from the traffic (the number of states can be very
large) and that there is no solution for limited capacity buffer.

The criteria for a practical performance model can be resumed in three points
[15]:

1. the traffic model is defined by a small number of parameters and reflects first
and second order statistics,

2. the model will accurately predict the performace parameters,

3. it is easy and amenable to analysis.

In this paper we propose using histograms as the network traffic model and in-
troduce a stochastic process that works directly with histograms. This stochastic
process obtains the queue length distribution as a histogram using a finite queue
model. The proposed method does not require approximating traffic to a Poisson
distribution nor solving queueing models. Our model assumes that the traffic is
stationary and the inter-arrival time distribution in a period is constant (determin-
istic). This basic histogram model will be refered to as the HD model (Histogram
Deterministic inter-arrival distribution). Based on this basic model we introduce
two new models: ii) the HD(N) model is based on obtaining several histograms using
different time scales and iii) the HD(H) model is based on the Hurst parameter and
it is long-range dependent. The best way to verify the correctness of our model
is to compare the predicted results to the ones obtained using a real model with
real traffic. These experiments are detailed in section IV and the results are very
accurate. These evaluations also analyse the influence of the number of histogram
classes on precision, showing that 10 classes are enough to obtain good results.

2 Traffic Workload Models

In this section we present three workload models based on histograms. The first one
is a simple workload definition that only capture first order statistics. The other two
are extensions of the first one in order to capture second order statistics (long-range
dependence).

3



0 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000
0

1 Mb

2 Mb

3 Mb

4 Mb

5 Mb

6 Mb

7 Mb

8 Mb

frame number

lo
ad

 in
 p

er
io

d 
(b

its
)

(a)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

load in period in Mb/s

pr
ob

ab
ili

ty

(b)

Figure 1: Traffic trace used as illustration. It corresponds to a 1-hour IP traffic trace (a) Number
of bits per period (40ms) (b) Arrival load histogram using 10 classes

2.1 Basic Histogram Workload Model

Network workloads will be characterized by the number of transmission units pro-
duced by a traffic source during a pre-established time period called the sam-
pling period1. Concretely, let At be a discrete random variable representing the
amount of traffic entering a network link during the kth sampling interval. Then
{At : t = 1, 2, . . .} ({At} for short) is a discrete stochastic process with a state
space I that is the set of integers between 0 and the maximum sample size Smax
(I = {0, 1, . . . Smax}).

A sample realization of this process {at : t = 1, 2, . . .} ({at} for short) is shown
in Figure 1a. This traffic trace was extracted from the MAWI traffic traces [16].
Specifically, we took a 1-hour trace of IP traffic corresponding to Jan 09, 2007
12:00 through 13:00 of a 150 Mb/s trans-pacific line (samplepoint-F). This traffic
trace has an average rate of 109 Mb/s. Using a sampling period of T = 40 ms (25
samples per second), the resulting traffic trace has 90,000 frames and a state space
of I = {0, 1, · · · 8Mb}.

Working with this huge state space can be cumbersome. So we are going to
reduce this state space using n subintervals or bins. Consequently, if we have a
range of [0, Smax] then the interval size will be lA = Smax/n. Using these intervals
we define a binned process {At}2 that have a reduced state space I ′ = {0 . . . (n−1)}
. The correspondence between some value a in the traffic state space of I and its
subinterval or class number i (state space I ′) is given by the following equation:

i = classA(a) =

⌊
a

lA

⌋
(1)

1For convenience we use the bit as the base unit. There is no variation in the precision of the
results using another unit (bytes, packets)

2Note the calligraphic font style. Along the paper, the calligraphic font style (A) will denote
the binned random variable with the reduced state space, and the normal font style (A) will denote
the original random variable.
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The inverse function is defined as the midpoint of the subinterval:

a = midA(i) = lA · i+ lA/2 (2)

For our traffic model we assume that the process {At} (and consequently the binned
process {At}) is ergodic (and stationary). Being ergodic means that we can estimate
the process statistics from the observed values of a single realization or time series
{at}. Being stationary means that all the binned random variables At have the same
marginal distribution. In other words, the distribution does not change on time and
we can work with only one random variableA that has the same statistical properties
of all the random variables At of the binned process. Assuming that the process
is stationary is a simplification necessary for our model. It is a matter of fact that
traffic workload is not stationary: in the same day the traffic load at 5 a.m. can
be very different than the traffic load at 12 p.m., or the traffic in the weekend is
very different that the traffic in a working day. This implies that the precision of the
model will depend on the time range of the traffic studied. It is clear that short-term
traffic analysis will be more precise than long-term traffic analysis. This topic will
be studied in the experiments section.

Another assumption of our model regards to the packet inter-arrival time dis-
tribution in a period (the time between the arrivals of successive packets). This
distribution can be approximated using several distributions, as detailed in Table
1. In this table we can see the probability mass function (pmf) of the distribu-
tion and a sample of the temporal distribution. The simplest distributions are the
deterministic (uniform) or burst mode. Nevertheless, this distribution is usually
modeled using Poisson or Pareto distributions. For example, the MAWI traffic has
the inter-arrival distribution of Figure 2a, that clearly shows a heavy-tailed distri-
bution. Nevertheless, if we zoom in this graph and show the distribution for less
than 1ms (see Figure 2b) the result is that 75% of the interarrival time is less than
0.05ms. So the deterministic distribution can be used as a simple model of the
interarrival distribution.

We assume that traffic arrives at uniform rate in a period but the number of
arrivals in a period have a distribution modelled by the binned random variable
obtained from the traffic (that is A). In other words, if we have N packets or bits in
a sampling period T , the inter-arrival distribution is deterministic with value N/T .

Using a traffic series we can obtain the set of interval probabilities pA(i) (that
is, the pmf). This will be denoted as:

p(A) = [pA(i) : i = 0 . . . n− 1] (3)

Using the MAWI traffic trace with n = 10 we have the following pmf: p(A) =
[0.0003, 0.0002, 0.0021, 0.0641, 0.2663, 0.3228, 0.2345, 0.0980, 0.0110, 0.0005] with
an interval length (lA) of 0.8 Mb. That is, the probability of pA(0) = 0.0003 corre-
sponds to the first interval [0, 0.8[ Mb with midpoint 0.4 Mb. The probability of the
second interval [0.8, 1.6[ Mb is pA(1) = 0.0002 and so on. If we plot this pmf we have
a kind of histogram of the original traffic trace (see Figure 1b). For convenience,
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Mode Inter-arrival distribution pmf temporal arrival
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Pareto pX(x) = k
xm

k

xk+1 E[X] = T
N

0
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0 1 2 3 4 5 6 7 8 9interarrival timeT/N
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P(x)

0
time

T

E[X]=T/N

0

100

0 1 2 3 4 5 6 7 8 9interarrival timeT/N

1

0.5

P(x)

0
time

T

E[X]=T/N

Table 1: Approximations to the inter-arrival distributions. The last column shows an illustrative
temporal arrival sequence. Our traffic model is based on a deterministic arrival distribution.
Nevertheless, the inter-arrival distribution is usually modeled using Poisson or Pareto distribution.

the X-axis of the histogram will show the midpoint rather than the interval number
(that is midA(i)). This way, we can see the distribution for the original state space.

Summing up, the random variable A will usually be managed through just two
attributes: the pmf (p(A)) and the interval length (lA). Abusing notation we will
use the term histogram for referring to the pmf of the random variable A.

In short, our traffic model is described using a histogram and a interval length.
This model assumes that the traffic is stationary and the inter-arrival time distri-
bution in a period is constant (deterministic). This basic histogram model will be
refered to as the HD model (Histogram Deterministic inter-arrival distribution).

Some important operators on random variables that will be used throughout the
paper are introduced bellow:

• The mean value (or expectation) of X is defined as: E[X ] =
∑n−1

0 pX (i)·i. The
maximum of X is defined as M [X ] = n− 1. And the variance of X is defined
as: V ar(X ) =

∑n−1
0 (i − E[X ])2 · pX (i). In the previous example M [A] = 9,

E[A] = 5.06 and V ar(A) = 1.27. It is easy to obtain the mean and variation
in the traffic state space using the interval size lX : E[X] = lX ·E[X ]+lX/2 and
V ar(X) = (lX)2 ·V ar(X ). For example E[A] = 0.8×106 ·5.06 + 0.8×106/2 =
4.45Mb and V ar(A) = (0.8× 106)2 · 1.27 = 8.14× 1011.

• The scalar multiplication of X by a constant c is a new binned variable Y = c·X
where lY = c · lX and pY(i) = pX (i) for i = 0 . . . n− 1. That is, multiplying by
a scalar only affects the interval size.

• The sum of two independent binned random variables X and Y is defined using
the convolution operator denoted as X⊗Y . The convolution is only defined for
random variables with the same interval length. Let n and m be the number
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Figure 2: MAWI inter-arrival distribution. (a) Probability in log scale that clearly shows a heavy-
tailed distribution (b) Zoom for inter-arrival time less than 1ms We represent the cumulative
distribution and the histogram. We can see that more than 75% of the inter-arrival distribution is
below 0.05ms.

of intervals of X and Y respectively and let lX = lY be their interval length.
The convolution X ⊗Y is a new variable Z with n+m− 1 intervals, the same
interval length lZ = lX = lY and pZ(i) =

∑i
k=0 pX(i− k) · pY (k).

2.2 Second-order Statistics models

In this section we study how the histogram changes depending on the sampling
period. Based on these studies we propose two new traffic models that reflects
second-order statistics.

Let {At} be the stationary process described in the previous section with variance

σ2 and autocorrelation function r(k) = Cov(At, At+k)/σ
2. We define {A(m)

t } as the
m-aggregated process of {At}, that is obtained by aggregating and averaging the
data in Ak by blocks of size m

A
(m)
t =

1

m
(Am(t−1)+1 + · · ·+ Amt) (4)

and r(m)(k) is defined as the autocovariance function of {A(m)
t }. The first effect

of the aggregation of the process is to smooth the traffic rate in each period, so
the variation is reduced. How this variation changes depending on the factor of
aggregation is related to the study of the self-similarity of a process.

A self-similar process has the property that when aggregated the new process
has the same autocorrelation function as the original. That is, the process {At} is
called second-order self-similar with Hurst parameter H = 1− β/2 if

V ar(A
(m)
t ) = σ2m−β and r(m)(k) = r(k) ∀m = 1, 2, . . . (5)

If 0 < H < 0.5 the process is short-range dependent (SRD) and if 0.5 < H < 1 the
process is long-range dependent (LRD).
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Figure 3: (a) Histograms for aggregated processes A(1)
t , A(4)

t , A(10)
t , A(40)

t and A
(100)
t . We can see

that the distribution shrinks as m increases revealing the self-similarity property of the traffic. (b)
Histograms generated using the Hurst parameter in the HD(H)traffic model using as base period
T = 0.01s. We can see that the histograms are very similar to the upper ones

Note that this means that the process is distributionally self-similar: the pro-
cesses {At} and {A(m)

t } have the same distribution, up to a scaling factor. Figure 3a
shows the histograms for several m-agregated processes with m = 1, 4, 10, 40 and
100 using a base period of T = 0.01s. We can see that the histograms shrinks as
m increases. This clearly denotes the self-similitary property of the MAWI traffic.
The variance of the m-aggregated process can be obtained as:

V ar(A
(m)
t ) = m2H−2 · V ar(At) = m2H−2σ2 (6)

The graph of the variance log(V ar(A
(m)
t )) versus log(m) is called the variance-

time plot. Using this graph we can obtain the Hurst parameter fitting a least-square
line with slope β = 2H − 2 through the resulting points ignoring those for small
m. In Figure 4 we can see the variance time plot of the MAWI traffic using a base
period of 1ms. This traffic has a Hurst parameter of about 0.85, so it is long-range
dependent.

For the binned process {At} we can obtain a similar expression for Equation 7.
Let σ̇2 = V ar(At), then

V ar(At) = (lA)2 · V ar(At) = (lA)2 · σ̇2 = σ2

We also define the binned processes {A(m)
t } for {A(m)

t }. We have that,

V ar(A
(m)
t )) = (lA(m))2 · V ar(A(m)

t ) = m2H−2σ2

Assuming lA(m) = lA we have:

V ar(A(m)
t ) =

m2H−2σ2

(lA)2
=
m2H−2(lA)2 · σ̇2

(lA)2
= m2H−2σ̇2 (7)
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Figure 4: Variance time plot of the MAWI traffic (Base period for m=1 is 1ms). The line with
slope β = −1 determines if a traffic is SRD or LRD. If the variance plot is above this line the
traffic is LRD otherwise is SRD. Thus, the MAWI traffic is LRD with Hurst parameter 0.85

In order to consider the second order statistics we propose two new models that
are based on the basic histogram model HD. The first one is based on obtaining
the histogram for several time scales. The HD model has only one histogram for
a given sample period TA. But if we have several histograms for several periods,
then the variance will be different on several time scales. For example, we can used
the histograma of Figure 3a with sampling periods 0.01s, 0.1s, 1s, 10s and 100s.
We have 5 histograms with different variances. Therefore this model can reflect the
variance of the traffic on diferent time scales. Nevertheless, this model of the traffic
does not capture the self-similarity characteristics of the traffic.

This model will be refered to as HD(N), where (N) reflects that there are different
histograms for several sample periods (or aggregates). One of the problem of this
model is the selection of the number and values of the sample periods. If we use
two much samples periods the model is too complex. So, we must select only 2
or 3 sample periods in order to make the model compact. For the selection of the
sampling period we can use a set of fixed period (for example 0.01s, 0.1s and 1s) or
another approach based on curve fitting.

The second model is based on the Hurst parameter. The idea is to estimate the
histograms of the m-aggregated processes {A(m)

t } using the histogram of the base

process {At}. By Equation 7 we know that V ar(A(m)
t ) = m2H−2σ̇2 and lA(m) = lA.

As previously stated, self-similarity means that processes {At} and {A(m)
t } have

the same distribution, up to a scaling factor. In this case the scaling factor for the
variance is m2H−2. The proposed solution is to modify (to scale) the histogram A
according to this scaling factor. The resulting histogram will have a distribution
similar to the original but the variance will be m2H−2σ̇2. This process is rather
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Figure 5: Sample scenario for the basic finite-buffer occupancy analysis. The output rate is
R=100 Mb/s (that is, a service rate of 4 Mb per sampling period) and a bounded buffer length
of 3.5 Mb. These values corresponds to classes r = 5 and b = 4. The process obtain the queue
histogram Q given the arrival histogram A.

tricky and it is detailed in the Appendix A. This appendix describes the function Â =
HScale(A,m,H) that calculates the histogram Â and length size for an aggregation
of m and a Hurst parameter H. For example, we can generate the histograms for
the MAWI traffic using a base period of T = 0.01s and the same aggregations that
in the HD(N) model. The results are shown in Figure 3b and we can see that the
histograms are very similar to the real ones. This model will be referred to as the
HD(N) model and its defined with a histogram and the Hurst parameter.

3 Network Peformance Model

This section introduces a stochastic process based on histograms for obtaining the
buffer occupancy distribution. First, we describe the model using the basic traffic
model (HD). Next, we present a simple extension of the basic model for the HD(N)

and HD(H) traffic models. Finally, using the buffer occupancy distribution we can
calculate several Quality of Service (QoS) parameters.

3.1 Basic Finite-Buffer Occupancy Analysis

The analysis starts by considering a single node as shown in Figure 5. Input traffic
is supplied through buffers of finite capacity. These buffers accumulate pending
traffic that cannot be transmitted over a sampling period. The system will be said
to be stable if the pending traffic converges to a finite value. The server discipline is
First Come First Served (FCFS) with deterministic (constant) distribution. Using
Kendall’s notation we are trying to resolve a HD/D/1/K queue.

The queue or buffer length can be expressed using a recurrence equation assuming
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a discrete time space T = 0, 1, 2, . . .. Let Q[k] be the queue length for period k ∈ T 3:

Q[k] = φb0(Q[k − 1] + A[k]− S[k]) (8)

where expression A[k] is the cumulative number of bits that the data source puts into
the buffer during the k-th period. Analogously the service rate S[k] is the number of
cumulative bits that the processor removes from the buffer during the same period.
Operator φ limits buffer lengths so they cannot be negative and cannot overflow the
buffer length b. This operator is defined as follows:

φbr(x) =


0, for x < r
x− r, for r ≤ x < b+ r
b, for x ≥ b+ r

(9)

The service rate can be expressed as a constant r, that is the output rate R multiplied
by the period TA (r = R× TA). Then, arrivals are spread uniformly over the period
and the traffic is processed at constant rate, an arrival rate of A[k] ≤ r will be served
constantly and buffer occupancy is not increased4. If A[k] > r the buffer occupancy
will increase (up to the queue limit b).

Q[k] = φb0(Q[k − 1] + A[k]− r) = φbr(Q[k − 1] + A[k]) (10)

This recurrence equation is the basis for defining a new stochastic process. We elim-
inate the time dependence of A[k] using a binned random variable A that describes
the arrival process. As stated in the previous section, our traffic model assume that
traffic is stationary so A = Ak ∀k ∈ T . The queue length is converted to a new
random variable that depends on the period. This way, the stochastic process is
defined as follows:

Qk = Φb
r(Qk−1 ⊗A) (11)

where the bound operator Φb
r() is defined as the statistical generalisation of the

previously defined φbr() operator. If X is a random variable with n intervals, then
Y = Φb

r(X ) is a random variable with b+ 1 intervals where:

p
(
Φb
r(X )

)
=
[ r∑
i=0

pX(i), pX(r + 1), pX(r + 2), . . . , pX(r + b− 1),
n−1∑
i=r+b

pX(i)
]

(12)

As an example of how this operator performs, given a random variable X with
histogram p(X ) = [0.0003, 0.0002, 0.0021, 0.0641, 0.2663, 0.3228, 0.2345, 0.0980,

3This equation is also detailed in [17]. As stated in the paper there is an easy solution when
b = ∞. In this case this recurrence equation is known as the Lindey’s equation. Nevertheless,
when b < ∞, they said that the solution was ’complicated’ and only presented the values for the
first 2 iterations

4This is the second assumption of our traffic model. The traffic arrives at uniform rate so
it can be sent at uniform rate. The Burst mode is easy to model too, all the traffic A[k] of
the period is accumulate first in the buffer and send uniformly. So equation 8 would be Q[k] =
φb

0(Q[k − 1] +A[k])− S[k] . The other models are far more complex to evaluate in this equation
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Figure 6: Evolution of the {Qk} process using the MAWI histogram. The column Ik shows the
result of the convolution between the previous queue and the arrival load Ik = Qk−1 �A. The row
Qk shows the evolution of the process. The steady state of the process is shown in the last row.

0.0110, 0.0005] (the MAWI histogram of Figure 1b), then Y = Φ3
5(X ) has p(Y) =

[ 0.0003+0.0002+0.0021+0.0641+0.2663+0.3228, 0.2345, 0.0980, 0.0110+0.0005] =
[0.6558, 0.2345, 0.0980, 0.0115].

Equation 11 is the definition of a new discrete time stochastic process {Qk}.
Although the arrival process is deterministic, the states of this process are defined
using the arrival process, (that is, the number of arrivals in a period) and it is
assumed to be independent. Consequently, this stochastic process is shown to be a
Discrete Time Markov Chain (DTMC) as detailed in the Appendix B.

The explanation of this process is provided using the MAWI histogram of Fig-
ure 1b. The process is described using an output rate R=100 Mb/s (that is, a service
rate of 4 Mb per sampling period) and a bounded buffer length of 3.5 Mb. In terms
of the pmf, those values correspond to r=classA(4Mb)=5 and b=classA(3.5Mb)=4.

In the first iteration, the pending execution histogram Q is obtained by sum-
ming classes 0..5 of A (this workload is processed without queueing, assuming a
deterministic arrival) and shifting it to the left (first row of Figure 6): Q1 = Φ5(A),
p(Q1) = [0.6558, 0.2345, 0.098, 0.011, 0.0005]. Since the buffer computation time is
b = 4, there is no probability of exceeding buffer capacity after the first iteration but,
in general, the bound operator establishes an upper limit on the queued workload due
to finite buffer length: Q1 = Φ4

5(A), p(Q1) = [0.6558, 0.2345, 0.098, 0.011, 0.0005].
In the second iteration, the buffer already stores a pending workload of Q1 and,
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Figure 7: Evolution of the {Qk} process using the MAWI histogram and a finite buffer b = 30.
The first row shows the evolution when E[A] ≤ r (5.06 < 6): in this case the process converges
and the buffer is uniformly used. The second row shows the case when E[A] > r (5.06 > 5) : in
this case there is no convergence.

in addition, a new workload A arrives. The cumulative workload histogram in the
buffer after this iteration is the convolution of the previous histograms (second row
of Figure 6): I2 = Q1 �A, p(I2) = [0.0002, 0.0002, 0.0015, 0.0426, 0.1899, 0.2804,
0.2563, 0.1539, 0.0569, 0.0153, 0.0024, 0.0002, 0.0000, 0.0000 ]. Now the effect of the
finite buffer (4 classes) will produce a loss in the cases where there is a probability
that the buffer length is greater than 4. That is, classes 0..5 are accumulated in class
0 (they are sent), classes from 6 to 9 (that is b+r) are stored in the buffer and classes
greater than 9 are discarded, so this probability has to be added to the probability
of class 9. According to this, the result of the second iteration is: Q2 = Φ4

5(I2),
p(Q2) = [0.5147, 0.2563, 0.1539, 0.0569, 0.0179].

Using an iterative method, the steady state is p(Q) = [0.1912, 0.1585, 0.1852,
0.1960, 0.2691] (last row of Figure 6). Note that the transformation to the histogram
class domain produces discretization errors. The effect of this transformation will
be studied in detail in the evaluation experiments.

The evolution in time of this stochastic process can be analysed in terms of the
r value and the mean value of A. When M [A] ≤ r (r = classA(R×TX)), the buffer
occupancy is zero because it is easy to prove, from its definition, that Φr(A) is zero
in this case. The case when M [A] > r is the most interesting one, because statistical
analyse allow arrival rates to exceed occasionally the output rate capacity during
transitory overloads. With a finite buffer, the process always converges because it
is always bounded by operator Φb

r(). Two cases can be considered when M [A] > r.
If E[A] ≤ r the buffer is uniformly used and when E[A] > r the buffer distribution
tends to the right side. System evolution for the above considered cases is shown in
Figure 7. We use the MAWI workload that has E[A] = 5.06 and M [A] = 9. The
first row shows that the stochastic process converges to a steady state solution for
a finite buffer of 30 and a constant service rate r = 6, since E[A] ≤ r. The second
row shows the situation with r = 5 and a finite buffer b = 30. It can be seen that
the probability of full buffer tends to 1.

Summing up, the method for obtaining the queue occupancy distribution is based
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Figure 8: The HBSP Method for obtaining the buffer distribution: (1) The histogram is obtained
for a traffic workload using a sampling period TA. The interval length (lA) is calculated using
the number of classes and the sample size Smax. (2) For a given output rate R and buffer size
B we obtain the corresponding classes b and r. Using the arrival histogram A with the b and r
parameters we can apply the stochastic process. (3) The steady state of this stochastic process is
the buffer distribution Q. Note that the stochastic process only works with classes. (4) From the
buffer histogram we obtain the midpoints and represent it using a line graph. Using this kind of
graph is better for comparing several data sets.

on this stochastic process. This method will be named the HBSP (Histogram Based
Stochastic Process) method and is outlined in Figure 8:

3.2 Histogram classes and precision

One key issue is to determine the number of classes of a histogram. This is, in
general, a trade off between representation economy and precision. If there are too
many intervals, the representation will be cumbersome and histogram processing
will be expensive, as the complexity of algorithms mostly depends on the number of
classes. On the other hand, too few intervals may result in losing information about
the distribution and masking trends in data. The experiments shows that 10 classes
are enough to obtain accurate results.

Another important problem is that histogram processing using a reduced number
of classes produces results that has poor precision. It is paradoxical that these
errors occur even if a small number of classes is sufficient to properly describe a
given workload without losing a great deal of information. The reason for these
inaccuracies seems to be the effect of the low number of classes when using the
iterative algorithms. The number of classes for the histogram of the buffer is b+ 1.
If b is very low (for example 2 or 3) we have only 3 or 4 classes for the resulting
buffer, so the precision is very low. The solution proposed in this paper consists in
overclassing the histogram.
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Overclassing X by a factor k means applying a transformation ∆+
k : X −→ Y to

increase uniformly the number of classes of X by splitting each interval of X into
k intervals of Y . The interval length of Y is lY = lX/k and its pmf has a larger
number of classes m = k×n. Probabilities pY(j) are obtained by linear interpolation
of values pX (i) in the range i : 0 . . . n − 1 to the range j : 0 . . .m − 1. This way,
if we overclass the arrival histogram by a factor of 10, the classes for b will also be
increased by a factor of 10, and the resulting buffer histogram will have more classes
and the results will be more accurate. In practical terms the experiments show that
the best results are obtained using over 10 or 20 classes with an overclassing factor
of 10.

3.3 Buffer analysis for HD(N) and HD(H) models

In subsection 3.1 we have described a method to obtain the finite buffer distribution
histogram using the traffic histogram (that is, the HD/D/1/K queue solution). The
solution for the buffer analysis of the HD(N) and HD(H) models is simple and effective:
first, we obtain the buffer histogram for each aggregated histogram and then, using
these buffer histograms we calculate the mean histogram.

For the HD(N) model we have a set of h histograms ~A = {A(m1),A(m2), · · · A(mh)}.
Using the HD/D/1/K queue solution we can obtain a set of buffer histograms ~Q =
{Q(m1),Q(m2), · · · Q(mh)}. The resulting histogram Q will be a function of this set

of histograms ( ~Q). We experimented with several functions and the best approach
was the mean histogram (for the interval length lQ we can use lQ(m1)):

p(Q) = [pQ(i) =
h∑
j=1

pQ(mj)(i)/h : i = 0 . . . n− 1] (13)

In the HD(H) model we do not have a set of histograms, but we can generate them
using the HScale function described in subsection 2.2. First, we must select the
set of values for ~m = {m1,m2, · · ·mh}. Using this set of values we obtain a set of

histograms ~A = {HScale(A,mi, H) i = 1 . . . h}. Then, we can follow the method
as detailed for the HD(N)model. The problem is the selection of the values for m.
This will be studied in the evaluation section.

3.4 QoS parameters

Some of the most important performance parameters of a router are delay and loss
ratio. This section shows how to obtain these parameters using the resulting buffer
histogram (Q).

The router delay D is the time between message arrival at that station and
message departure from the station. It is the sum of the queuing delay U and the
transmission delay T . This can be expressed in statistical terms as:

D = U ⊗ T (14)
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The queueing delay is the time spent by the message waiting for previous buffered
messages to be transmitted. In the case of a router with an output rate of R, and a
buffer length characterized by random variable Q the queueing delay is proportional
to Q, so it has the same histogram.

U =
1

R
· Q (15)

In statistical terms, multiplyingQ by a scalar 1/R (scalar multiplication) only affects
its interval length. Then the interval length of U is lU = lQ/R, expressed in seconds.

The transmission delay is the time spent by the network interface in processing
the message and it is closely related to the transmission speed. Assuming Td is the
delay for any transmission unit of size lesser than the MTU (Maximum Transmission
Unit) and using the same interval length of U we obtain the class interval as d =
classU(Td). In statistical terms, T has the following distribution: p(T )=[t0, . . . , td]
with ti = 0 for i ≤ d and ti = 1 for i = d. Then, D = U ⊗ T can be calculated
convolutioning Q and T :

D = Q⊗ [0, . . . , 0, 1d] (16)

As an example, consider the buffer length Q obtained for the histogram used in
subsection 3.1 using a service rate R = 100 Mb/s (r = 5), and assume that the
transmission delay is Td = 20 ms. First, we obtain the interval length of U as lU =
lA/R = 0.8/100 = 8 ms. The class of Td is d = classU(20 ms) = 2. The router delay
is calculated as: D = Q⊗T , that is p(D) = [0.1912, 0.1585, 0.1852, 0.1960, 0.2691]
⊗ [0,0,1] = [0, 0, 0.1912, 0.1585, 0.1852, 0.1960, 0.2691]. Obtaining the midpoints of
D we have [ 4ms, 12ms, 20ms, 28ms, 36ms, 44ms, 52ms]. That means, for example,
that probability for 20ms delay (third interval) is about 0.1912.

The calculus of the loss ratio can be clearly understood using the same example.
Consider the stationary cumulative workload pmf (I = Q � A, p(I)= [0.0001,
0.0001, 0.0005, 0.0127, 0.0616, 0.1163, 0.1584, 0.1851, 0.1960, 0.1528, 0.0844, 0.0286,
0.0031, 0.0001]). With a service rate class r = 5 and a buffer length class b = 4,
from a workload of 13 units, 5 units are sent, 4 units are stored in the buffer and 4
units are lost. Therefore, the histogram pmf (C) can be obtained by shifting (with
accumulation) r + b = 5 + 4 = 9 positions to the right. Using the bound operator:

C = Φ9(I), p(C) = [0.8836, 0.0844, 0.0286, 0.0031, 0.0001] (17)

Histogram C reflects that 0.8836 is the probability of no loss, 0.0844 is the probability
that 1 unit is lost and 0.0286 is the probability that 2 units are lost and so on.
Accordingly, the probability of at least 1 unit being lost is the following weighted
sum: E[C] = 0.0844 ∗ 1 + 0.0286 ∗ 2 + 0.0031 ∗ 3 + 0.001 ∗ 4 = 0.1513. Then, the
loss ratio is the proportion between all the units that are lost and the mean of the
arrival workload:

PL(b) =
E[C]
E[A]

=
0.1513

5.06
= 2.99% (18)
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Figure 9: Results of the evaluation using MAWI Traffic trace for R = 110 Mb/s and B = 1 Mb.
All the models has 10 classes with an overclassing factor of 10. The HD model has period 40ms,
the HD(N) model 3 periods (10ms, 50ms, 200ms) and the HD(H) model a base period of 10ms, and
m ranging from 1 to 100 (10ms to 1s). The results are very near to the simulated ones. The best
results are obtained using the HD(H) model

4 Evaluation

This section presents an evaluation aimed to validate the models presented in this
paper. The best way to validate a performance model is to compare the predicted
results (buffer occupancy distribution and loss ratio) with the ones obtained using
real traffic traces and real network models. We compare the results obtained ana-
lytically using the 3 models (HD, HD(N) and HD(H)) with results obtained through
simulation. The traffic used in these evaluations are the MAWI trafic [16] trace de-
scribed in Figure 1 and the Caida OC-48 traffic [18]. The CAIDA OC48 is a packet
header trace of an OC48 link at AMES Internet Exchange (AIX) on Apr 24, 2003
(1 hour) with an average rate of 92 Mb/s.

4.1 Evaluating the traffic models

In order to evaluate that the models are accurate and realistic, and event driven sim-
ulation using these real traffic trace was performed. In each period, the simulation
calculates the buffer length and the number of lost packets.

In the first experiment we used the MAWI traffic trace (see Figure 1a), the output
rate was set to aproximately the mean rate R = 110 Mb/s and the buffer length was
set to B = 1 Mb. The parameters r and b are obtained as r = classA(110 Mb/s×
0.04 s) = classA(4.4 Mb) and b = classA(B) = classA(1 Mb). For example, for
10 classes (lA = 0.8 Mb) r = 5 and b = 1, and for 100 classes (lA = 0.08 Mb) r =
50 and b = 12. We obtained analytically the buffer histograms using the following
traffic models: a) an HD model with 10 classes and period 40ms (as shown in
Figure 1b) , b) the HD(N) model with three sample periods (10ms, 50ms, 200ms)
and, c) the HD(H) model with a base period of 10ms, and m ranging from 1 to 100
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Figure 10: Queue Probability Distribution using the CAIDA OC-48 traffic trace for R = 90 Mb/s
and B = 1 Mb. The HD(N) model is the most accurate.

(10ms to 1s). For the histograms we used 10 classes with an overclassing factor
of 10. For comparison, we obtained the buffer histogram using simulation. The
queue probability distribution is shown in Figure 9a (note that the y-axe is in log
scale) . We can appreciate better the differences using the cumulative probability
(see Figure 9b). The results for the three models are very accurate, although best
results are obtained using the HD(N) model. Regarding the loss ratio, the simulation
provided a value of 0.0640109, while the HD model estimated a value of 0.041934,
the HD(N) model 0.0576173 and 0.0583313 for the HD(H) model.

For the following experiment we used the CAIDA OC-48 traffic. The output
rate was set to R = 90 Mb/s and the buffer length was set to B = 1 Mb. We
obtained analytically the buffer histograms using the same sample periods for the
traffic models of the MAWI experiments. The results are in Figure 10. We can see
that the best results are obtained using the HD(m) model. Regarding the loss ratio,
the simulation provided a value of 0.0494095, while the HD model estimated a value
of 0.0344655, the HD(N) model 0.0436831 and 0.0426831 for the HD(H) model.

Previous experiments used a 1-hour trace for obtaining the histogram, producing
very good results. The following experiment uses the MAWI 12-hour trace (from
8:00 to 20:00 of the Jan 09, 2007 traces). The rate was set to R = 120 Mb/s and the
buffer length to B = 1 Mb. This means using long-term traces instead of short-term
traces. Results are still very accurate, as shown in Figure 11. Regarding the loss
ratio, the HD model predicted 0.0146371, HD(N) 0.0214733 and HD(H) 0.0202713
while the simulation yielded 0.0275981. In summary there is a little loss of accuracy
when using long-term traces, as it could be expected, due to information loss in the
histogram representation.

Previous experiments were also repeated with different traffic traces (using MAWI
traces from a different day and hour, and traces from the NLANR repository), out-
put rates and buffer lengths. Results were very similar to the ones presented here
(See [19] for more experiments).
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Figure 11: MAWI long-term traffic queue distribution for R = 120 Mb/s and B = 1 Mb. The
results of using a 12-hour trace are still very accurate

4.2 Accuracy

This subsection is devoted to identify and evaluate factors that may affect the ac-
curacy of the results. The selection of the number of classes and the sample period
was based on the results of the following experiments.

One of the keys aspect of these traffic models is the selection of the sample
periods. We analyse the relation between the sampling period and accuracy using
the basic HD model. In Figure 12a is the result of obtaining the buffer histogram
for several sample periods (base period = 10ms, m = {1, 2, 5, 10, 100} ). We can
see that the precision is clearly affected by the sample period. The best results are
obtained using m = 5, that is a sampling period of 50ms. Figure 12b shows the
normalized difference5 between the buffer histograms obtained using the HD traffic
and that obtained through simulations varying the sample rate from 10ms to 20s.
This figure also shows the loss ratio error: that is, the relative error between the
loss ratio predicted by our model and the ones obtained in the simulation. The best
precision is obtained using periods between 20ms and 100ms.

The following experiment analyses the relation between buffer length and loss
ratio for the HD(N) traffic model. Loss ratios are calculated for different output rates
varying the buffer length between 10 kb and 10 Mb (this corresponds to a maximal
queue delay of less than 0.1 s). Results are presented in the form of a loss ratio
curve (see Figure 13). The prediction of loss rate using the HD(N) traffic model is
very accurate, since it is very close to simulations.

Regarding on the number of classes several experiments were done varying the
number of histogram classes. The key question is: how many classes are necessary to
get a good accuracy?. In the following experiment the number of classes was varied
from 6 to 100 and 4 histograms were calculated: the first one using the original
histogram with no overclassing and the other 3 using overclassing factors of 5, 10
and 20. The normalized difference between these histograms and the one obtained

5the normalized difference of 2 vectors A=[a1, · · · an] and B=[b1, · · · bn] is defined as√
(a1 − b1) + · · ·+ (an − bn)
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Figure 12: Sample Period and precision. a) Queue Probability distribution for several sample
periods (base period = 10ms). We can see the precision of the result depends clearly on the base
period. b) This graph shows the Normalized difference between the histograms and the loss ratio
error obtained using the HD model and the simulations for sample rate between 10ms and 20s.
The best results are obtained for periods between 20ms and 100ms.
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Figure 14: Relation between Number of Classes, overclassing and precision. the number of classes
was varied from 6 to 100 and 4 histograms were calculated: ’x1’: original histogram, ’x5’,’x10’ and
’x20’ with overclassing factors of 5, 10 and 20. We can see that accuracy is not greatly improved
using more than 15 classes and better results are obtaining using an overclassing factor of 10.

through simulation is shown in Figure 14a. The loss ratio is compared with the loss
ratio of simulations in Figure 14b. Results show that the main effect of overclassing
is to smooth the results reducing the original peaks. It can be also seen that there
is no significant variation using a overclassing factor greater than 10. Regarding on
the number of original classes, it can be seen that accuracy is not greatly improved
using more than 15 of 20 classes. For the original histogram, accuracy is better
in some cases using more than 60 classes (see Figure 14a) but in some other cases
it is worst. Therefore, in the average case, it is better to use overclassing. The
final conclusion is that the best results are obtained using 10 to 20 classes with an
overclassing factor of 10.

4.3 Long-range dependence implications on the models

In [17] is discussed the impact of the long-range dependence (LRD) on the buffer
occupancy and indicated that LRD does not affect the buffer occupancy when the
busy periods of the system are not large. Similar conclusions were obtained in [20]:
short-term correlation have dominant effect on cell loss ratio. More important is to
choose the critical time scale (CTS), that is related with the sample period. In [20],
the authors considered the buffer behavior at the time-scale beyond the CTS is no
significantly affected. The experiments of this paper showed that the best model
was HD(N) that is not strictly LRD. Therefore, the results confirms the results of [20]
and [17] . Our experiments shows that when selecting correctly the sampling period
the results are very accurate.

Another question is the selection of the model. Each model has its pros and
cons:

• HD model: this model is simple and compact and the results are still very
accurate. It is a good approximation.
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Figure 15: Comparison with other methods. a) Comparison of the buffer histograms obtained
using our HD(N) model and the MD1K approach by Skelly and Shroff ( [12] for R = 110Mb/s B
= 1Mb. We can see that the MD1K approach collapses when the buffer is large b) Comparison of
the cell loss ratio obtained using the Maximum Variance Asymptotic (MVA) method versus the
HD(N) model results R = 110M/s. The graph shows a better precision of the HD(N) model

• HD(N): it is the more accurate model but it is not so compact. We must obtain
several histograms for several periods, so it can be cumbersome.

• HD(H): this model is still compact (we only need one histogram and the Hurst
parameter) and the results are very good.

4.4 Comparison with other methods

This section compares the model with previously published methods for analyzing
buffer length and loss ratio. To simplify we only compare the results of the HD(N)

model. Regarding the calculation of the buffer length, the best known approach is
the method introduced by Skelly and Shroff (known as the Histogram Model [12]
or the Generalized Histogram Model [13] and used with few modifications in [21]
and [22]). This approximation is based on resolving an M/D/1/N queue for each
arrival rate of the histogram. We implemented this method and compared the
obtained buffer length histogram with the one obtained using the HD(N) model.
Figure 15a shows that the differences between the HBSP model and the M/D/1/N
method are large. The results using the M/D/1/N are imprecise. The problems
with the M/D/1/N is that the buffer curve collapses when the buffer size if high.
The results presented in [12] used very low buffer lengths (about 50 cells) so the
results were more accurate. Nevertheless when larger buffer (about 500) the buffer
curve begins to collapse.

Regarding the loss ratio most of the papers deal with the tail probability (or
overflow probability) P (Q > t) rather than the loss probability. In this paper
we compare the HBSP method versus the Maximum Variance Asymptotic (MVA)
approximation for loss detailed in [11]. In Figure 15b we can see the loss probability
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Figure 16: Sample network with the load histograms of the nodes. This can be seen as a visual
monitorization of the network load. With this information we can obtain the loss ratio, the end-
to-end delay distribution for a given path.

depending on the buffer size. The graph shows that the HD(N) cell loss curve is more
precise than the MVA curve.

5 Applications of the model

There is a wide spectrum of applications of the HBSP model. We can obtain the
traffic QoS parameters, as loss ratio or node delay using the HBSP model. Using
the router delay of the nodes we can obtain the network delay pmf DN . This pmf
is obtained as the sum (convolution) of the node pmfs that a packet traverses:

DN =
⊗
i∈path

Di (19)

For example, using Figure 16 we can obtain the end-to-end delay distribution for
the path marked with blue. This pmf is very useful because we can obtain the mean
delay, or for example, the probability that a packet is delayed more than a certain
value. For example, if we transmit video or audio, the delay histogram can be useful
in the end nodes to adapt their transmissions rates or to configure the buffer in the
reception nodes. This information can be used for admission control as well.

Another important application is for traffic provisioning and network configura-
tion. Optimal provisioning of network resources is crucial for reducing the service
cost of network transmission. This is the goal of Traffic Engineering : the design,
provisioning, performance evaluation and tuning of operational networks. The fun-
damental problem with provisioning is to have methods and tools to decide the net-
work resource reservation for a given Quality of Service requirements [23]. Therefore,
the HBSP method can be very useful for Traffic Engineering. The HBSP method
allows to obtain the load histogram of the nodes of a network. These histograms can
be used to configure the network. For example, if we have a network like the one
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presented in Figure 16 we can see that node 4 is highly loaded and we can decide to
increase its resource or to change some route in order to reduce the load in node 4.

It also allows to evaluate parameters like the loss ratio (for a given buffer and
output ratio), the node delay, the buffer/output ratio needed for a required loss, etc.
One important decision that must be taken is the time-scale of the provisioning. The
measured traffic can be a long-term trace (daily or weekly traces) or a short-term
trace (hourly traces). This depends on the network capability to support dynamical
variation in the reservation of the channel resources (for example, an hour) (see [24]).

A great advantage of the HBSP model is the easy implementation of the his-
tograms. Is very easy to capture and store a load histogram with few classes (about
10) in a network node.

6 Conclusions

This paper introduces three traffic models and a performance model to obtain the
finite buffer occupancy distribution. The performace model is based on a stochastic
process working with histograms for resolving the HD/D/1/K queue. The result
of this stochastic process is a histogram of the buffer distribution. This buffer
distribution has an easy solution for the infinite buffer case but it seems to have
a complicated solution for the finite buffer case [17]. For this reason, most of the
papers obtains the tail probability P (Q > t) using an infinite buffer model and
approximate the cell loss using this tail probability. The model presented in this
paper is a solution of the finite buffer case. From the buffer histogram and the
arrival histogram it is easy to obtain the cell loss ratio.

Three models are described in this paper. The first model (HD), is a basic
histogram model that is compact and short-range dependent. The second one (the
HD(N) model) is based on obtaining several histograms using different time scales.
The third one (the HD(H) model) is based on the Hurst parameter and it is long-
range dependent. Experiments were performed using several real-traffic traces. The
best results are obtaining using the HD(N) model although it can be cumbersome.
So, the best approach is the HD(H) model, that is compact and it is very precise.

There is a wide spectrum of applications of this model. We can obtain the traffic
QoS parameters, as loss ratio or node delay. The delay histogram is very useful
because we can obtain the mean delay, or for example, the probability that a packet
is delayed more than a certain value. For example, if we transmit video or audio, the
delay histogram can be useful in the end nodes to adapt their transmissions rates
or to configure the buffer in the reception nodes. This information can be used for
admission control as well. Another important application is for traffic provisioning
and network configuration. Optimal provisioning of network resources is crucial for
reducing the service cost of network transmission.
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A Method for scaling and histogram

This appendix describes how to obtain the m-aggregated histogram Â with a vari-
ance according to the scaling function m2H−2. The function that obtains this new
histogram will be named HScale. That is, Â = HScale(A,m,H) generates a new
histogram Â with variance m2H−2 ·V ar(A), pmf p(Â) = [pÂ(i) : i = 0 . . . n− 1] and
interval length lA ·m.
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As the variance of A must be reduced we are going to shrink the histogram.
For example, if we have the histogram p(A) = [0.2, 0.6, 0.2] that has mean 1 and
variance 0.4, and we want to decrease its variance to 0.3 the new histogram will be
[0.15, 0.7, 0.15].

The goal is to shrink the histogram reducing the values at the edges and ac-
cumulating this reduction for the classes in the mean. Assume that the histogram
has n classes and the classes in the mean are h = bE(A)c and h + 1. We start
in the left edge. The probability of class 0 (p0 = pA(0)) is reduced by a factor c
(0.5 < c < 1). That is, p̂0 = pÂ(0) = c · p0. This reduction ((1 − c) · p0) is accu-
mulated to class 1 that is also reduced by c: p̂1 = c · p1 + (1 − c) · p0. For class
h− 1 we have p̂h−1 = c · ph−1 + (1− c) · ph−2. For the classes in the mean, we must
calculate another reducing factor c′. The reason is to reduce these classes according
to the mean. For example, if the mean is very near the class h we must reduce the
class h + 1 accordingly. On the other hand if the mean is near to class h + 1 we
must reduce the class h. This factor is obtained as c′ = 0.5− (h− E(A)). Assume
c′ > 0 (mean near class h), then we have p̂h = ph + (1 − c) · ph−1 + c′ · ph+1 and
p̂h+1 = (1−c′) ·ph+1 +(1−c) ·ph+2. For c′ < 0 is similar . The right side is equivalent
to the left. So, we have:

p̂0 = c · p0 = p0 · c
p̂1 = c · p1 + (1− c) · p0 = p0 + (p1 − p0) · c
...

...
...

p̂h−1 = c · ph−1 + (1− c) · ph−2 = ph−2 + (ph−1 − ph−2) · c
p̂h = ph + (1− c) · ph−1 + c′ · ph+1 = ph + ph−1 + c′ · ph+1 + −ph−1 · c
p̂h+1 = (1− c′) · ph+1 + (1− c) · ph+2 = (1− c′) · ph+1 + ph+2 + −ph+2 · c
p̂h+2 = c · ph+2 + (1− c) · ph+3 = ph+3 + (ph+2 − ph+3) · c
...

...
...

p̂n−1 = c · pn−1 = pn−1 · c
(20)

It is easy to see that
∑n−1

0 p̂i = 1.
The goal of the following method is to transform a histogram A to a scaled

histogram Â with variance v = m2H−2 · V ar(A). We have:

V ar(Â) =
n−1∑

0

(i− E[Â])2︸ ︷︷ ︸
di

·p̂i =
n−1∑

0

di · p̂i = v (21)

Then, we multiply all the terms in equation 20 by di and summing all the probabil-
ities and grouping terms we have:

∑n−1
0 di · p̂i = Sc · c+ S = v (the SA coefficient is

the sum of all the coefficients of the c variable and SB is the sum of the coefficients
without variable). Then the reducing factor c is obtained as:

c =
v − S
Sc

(22)
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For obtaining the coefficients we must obtain the values of di. We need to estimate
the value of E[Â]. The mean of the original histogram (E[A]) is a good estimator.
Using this mean we obtain the sum of the coefficients and resolve equation 22. With
this factor c we apply equations 20 for obtaining the distribution of Â. Normally,
the variance of Â will not be exactly v because we are estimating the mean as E[A].
So we can repeat the calculations using the mean of the calculated histogram E[Â].
Practically, in 2 or 3 iterations we obtain the desired histogram with the required
variance. If the result of c is not in the range 0.5 < c < 1 this mean that the desired
variance can not be obtained in one step. So, we apply a factor of 0.5 to obtain a
new histogram that is shrunk by a factor of 0.5 and using this new histogram we
can obtain a new factor c, until the factor is greater than 0.5.

The algorithm of the HScale function is outlined in Figure 17. In the algorithm
we have 2 functions: The function SumCoef obtains the sum of the coefficients SA
and SB for a given mean, and the function Getpmf calculate the pmf according to
equation 20.

As an example of how the function works, we will use the MAWI histogram of
Figure 1b, p(A) = [0.0003, 0.0002, 0.0021, 0.0641, 0.2663, 0.3228, 0.2345, 0.0980,
0.0110, 0.0005] that has a base period of 0.04ms, variance 1.282 and an interval
length of lA = 0.08Mb. For m = 10 and H = 0.85 the result is: p(Â) = [0.0001,
0.0002, 0.0010, 0.0289, 0.1478, 0.6580, 0.1105, 0.0481, 0.0050, 0.0002] with an inter-
val length of 8Mb. The variance is 0.6334 according to v = var(A) ·m2H−2.

B Buffer analysis as a DTMC

In this appendix we show that the stochastic process {Qk} is a Discrete-Time Markov
Chain (DTMC). Additionally, we can easily obtain the transition probability matrix
P . Using this probability matrix we can obtain the values for Qk. The problem of
using DTMC it that is not easy to obtain an analytical solution for the steady state
(that is, when k →∞).

A Discrete-Time Markov Chain is a stochastic process whose probabilities distri-
butions in state j only depends on the previous state i, and not on how the process
arrived to state i. It is easy to proof that {Qk} is a DTMC. The probability that the
buffer in period k takes the value j can be expressed using the buffer probabilities
of period k − 1 as follows:

P [Qk = j] =
∑
i

P [Qk−1 = i] · P [Qk = j|Qk−1 = i] (23)

The term pij(k − 1, k) = P [Qk = j|Qk−1 = i] denotes the probability that the
process makes a transition from state i at period k − 1 to state j at period k. This
probability is obtained from the arrival load A and given that A is the same in all
the periods, then the pij(k − 1, k) does not depend on the period k. Therefore, we
can represent pij(k − 1, k) as pij and Equation 24 is reduced to:

P [Qk = j] =
∑
i

P [Qk−1 = i] · pij (24)
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Algorithm Â = HScale(A, m, H)
input
A ’Original histogram
m ’Aggregation
H ’Hurst parameter
output
Â ’Histogram for the m-aggregation

1 begin
3 v = V ar(A) ·m(2−2H);Ac = A
4 while true
5 mean = E[Ac]
6 do
7 [S, Sc] = SumCoef(Ac, mean)
8 c = (v − S)/Sc
9 Af = Getpmf(Ac, c, mean) ’Calculate the pmf for c
10 mean = E[Af ] ’Repeat with a new mean
11 while (0.5 < c < 1) and (|V ar(Af )− v| < ε)
12 if 0.5 < c < 1
13 Â = Af ’The histogram has Var=v!!!
14 return
15 else
16 mean = E[Ac]
17 Ac = Getpmf(Ac, 0.5, mean) ’Scale the histogram by 0.5
18 end if
19 end while
20 end

Figure 17: The fv algorithm.
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pij is known as the one-step transition probability. From this we can obtain the
transition probability matrix:

P = [pij] =

p00 p01 p02 · · ·
p10 p11 p12 · · ·
...

...
...

. . .

 (25)

The components of this matrix are easy to obtain using the definition of the stochas-
tic process Qk. That is, for obtaining the i-row of P we apply one iteration of the
stochastic process using an initial load of one unit in j. For example, the first row
is obtained as Φb

r([1, 0, 0, 0, . . .] �A). Using the matrix P we can obtain the pmf of
Qk as:

Qk = Q1P
k (26)

Nevertheless, determining the asymptotic behavior (that is, the steady state) poses
problems. This implies obtaining the steady-state probability vector v as:

v = vP vj ≥ 0,
∑
j

vj = 1 (27)

This matrix has a finite size of (b+ 1)× (b+ 1). Nevertheless, numerically resolving
Equation 27 is not easy even for a little matrix. Therefore, we must use iterative
methods as the power method or something similar.

Using the example of subsection 3.1, p(A) =[0.0003, 0.0002, 0.0021, 0.0641,
0.2663, 0.3228, 0.2345, 0.0980, 0.0110, 0.0005] with r=5 and b=4 we obtain the
following matrix:

P =


0.6558 0.2345 0.0980 0.0110 0.0005
0.3330 0.3228 0.2345 0.0980 0.0115
0.0667 0.2663 0.3228 0.2345 0.1095
0.0026 0.0641 0.2663 0.3228 0.3440
0.0005 0.0021 0.0641 0.2663 0.6668

 (28)

We can obtain the second iteration state as Q2 = Q1P = [0.5147, 0.2563, 0.1539,
0.0569, 0.0179]. The steady state probability vector is v = [0.1912, 0.1585, 0.1852,
0.1960, 0.2691]. This is the pmf of Q (p(Q)).
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