
A Stochastic Analysis of Network Traffic

Based on Histogram Workload Modelling

Enrique Hernández-Orallo ∗, Joan Vila-Carbó

Departamento de Informática de Sistemas y Computadores. Universidad
Politécnica de Valencia. Camino de Vera, S/N. Valencia, Spain

Abstract

Finding a simple network traffic model described by a reasonable number of pa-
rameters that enables powerful analysis methods and provides accurate results has
been a challenging problem during the last decades. This paper proposes a discrete
statistical description of network traffic, known as histograms, and a stochastic anal-
ysis method based on the concept of statistical convolution. Unlike other histogram
based methods, it does not require approximating traffic to a Poisson distribution
(or any other distribution) nor solving queueing models. The method shows that the
buffer length problem is a stochastic process that converges to a steady state prob-
ability when the average traffic arrival rate is less or equal than the output service
rate, although this arrival rate can be higher during transient overloads. The paper
shows that workload isolation is a desirable property of traffic scheduling algorithms
that highly eases the analysis and makes it algorithm independent. A more accurate
method based on calculating interferences among workloads is sketched for the case
of the GPS algorithm. The proposed method has been extensively evaluated using
synthetic and real traffic traces. These evaluations analyse the influence of some
factors on accuracy and show that the method improves the results of queueing
models. Applications of this model are very wide: analysis and prediction of QoS
parameters, network dimensioning and provisioning, traffic admission control, etc.

Key words: Traffic Modelling, Networks QoS, Discrete Statistical Traffic
Modelling, Stochastic Analysis.

∗ Corresponding author.
Email addresses: ehernandez@disca.upv.es (Enrique Hernández-Orallo),

jvila@disca.upv.es (Joan Vila-Carbó).
1 This work was developed under grant of the Spanish Government CICYT

DISCA technical report 21 November 2006

1 Introduction

Providing Quality-of-Service (QoS) requirements is a key issue in real-time net-
working applications, such as video and audio conferencing, video on demand,
etc. since they pose stringent requirements on delivering delays and packet-loss
ratios. Guaranteeing performance on this kind of applications usually requires
some network resource allocation, like bandwidth and buffers. Accurately eval-
uating these resources is one of the main challenges. This problem has been
analysed in the literature using two main approaches [1]: deterministic and
statistical techniques.

Deterministic approaches are based on simplistic workload characterisations
and worst-case analyses. QoS requirements are specified in absolute terms and
performance guarantees are mostly based on resource reservation [2]. A well
known example of deterministic bounds are the delay and buffer limits of
Parekh and Gallager [3,4] developed under the Generalized Processor Sharing
(GPS) theory and a leaky-bucket traffic characterisation [5,6]. Much work has
been done since then using the deterministic model [7–9]. The problem is that
it leads to resource overallocation and network infrautilisation, especially with
variable and bursty traffic.

Some approaches for improving resource utilisation of deterministic models
are based on reducing traffic variability. This includes considering traffic ag-
gregates rather than individual flows [10, 11], or traffic smoothing [12, 13].
However, keeping a high network utilisation mainly implies replacing absolute
limits by probabilistic ones. In other words, allowing some small percentage
of deadline violations and packet loss ratios. Packet losses are due either to
buffer overflow or to explicitly packet draining [14]. This is done for the pur-
pose of policing [15] or to avoid further congesting the network with excessively
delayed packets.

Statistical approaches are related to QoS guarantees. They have been also
analyzed in the literature, although to a lesser extent than the deterministic
model [16]. This approach was first introduced by Ferrari and Verma [17], who
proposed a channel-establishment condition for statistical performance guar-
antees using the Earliest-Due-Date (EDD) packet scheduling policy. Zhang
and Knightly [18] provided connection statistical performance guarantees un-
der Rate-Controlled Static-Priority (RCSP) scheduling using a traffic model
with a bounded number of packets in several time intervals and traffic shap-
ing in intermediate nodes to reduce traffic variability. Zhang et al. [19] also
derived a statistical bound on the end-to-end delay using GPS scheduling and
the Exponentially-Bounded Burstiness (EBB) model.

Closely related to the analysis methods of previous approaches is traffic mod-

2

elling. As more accurate is traffic description, better results can be obtained,
but usually the analysis method becomes more complex. There has been a
considerable amount of work on traffic characterisation in the literature [20]:

In the deterministic approach, traffic is described by providing just a few pa-
rameters, as the TSpec of RSVP [21], based on the token-bucket parameters.
This description is very coarse and does not capture the notion of traffic vari-
ability. Some improvements to this model are the ATM traffic description,
that provides a bound on the traffic bursts, or the concept of empirical en-

velope [22] which bounds the accumulated traffic in a given interval and its
approximation by a discrete number of points called envelope points [23]. How-
ever, all these descriptions are still pessimistic and usually provide a bound
on a (highly improbable) worst-case delay.

Some works based on the statistical model concentrate on matching statistical
parameters of models of video sources which describe traffic real traffic fairly
well [24–26]. However, there is no consensus on these models [20] that usually
degenerate to a readily analysable Gaussian model on very large networks.

An interesting approximation for traffic characterisation are histogram based
models which describe traffic as a discrete statistical distribution. They ex-
tend deterministic models, that usually describe traffic with one or two classes
(average and peak rate), with a discrete number of classes, quantifying their
probability. The model, known as the Histogram Model [27] or the Generalized

Histogram Model [28], was introduced by Skelly et al. [27] to predict buffer
occupancy, distributions and loss rate for multiplexed streams. A modified
version was also used by Kweon and Shin [29] to propose an implementation
of statistical real-time channels in ATM using the Traffic Controlled Rate-
Monotonic Priority Scheduling (TCRM), where they introduce a method for
determining the transmission capacity of multiplexed channels to statistically
guarantee a cell loss-ratio. These works use an analysis method based on a
M/D/1/N queueing system. The number of ATM cells generated during a
frame period is approximated to a Poisson distribution with a given rate λ.
For a given video sequence, λ is modelled as a histogram. The buffer occu-
pancy is calculated by solving the M/D/1/N system as a function of λ and
then weighting the solutions according to the histogram probabilities. This
methods yields good results with a reduced number of cells in the buffer, but
the inaccuracy increases with the number of cells.

This paper shows that the buffer length problem is a stochastic process that
converges to a steady state solution under certain conditions. The proposed
method does not require approximating traffic to a Poisson distribution nor
solving queueing models. The solution is easily obtained assuming a constant
bandwidth for each traffic stream (workload isolation). This is also implicitly
assumed in all previous works. But the paper sketches how the method can

3

be extended for considering workload interferences under a particular packet
scheduler. This is interesting for a real-time analysis of the system.

The proposed method has been extensively evaluated using synthetic and real
traffic traces. These evaluations analyse the influence of the number of his-
togram classes on precision, showing that 10 classes is enough to obtain good
results, although it is necessary to use a technique called overclassing for ob-
taining accurate results. The evaluations also show that the method improves
the results of queueing models with a simpler calculation method.

2 Histogram workload characterisation

The basic idea behind this work is improving the results of deterministic analy-
ses of network calculus and real-time systems by using a probabilistic workload
description that describes more accurately the workload variability than de-
terministic or simplistic descriptions and provides a powerful analysis method.

Network workloads will be characterised by the number of transmission units
produced by a traffic source during a pre-established time period called the
sampling period 2 . The proposed model characterises variable workloads not
as a function of time, but as a discrete statistical distribution (see Fig. 1b).
Choosing the sampling period is an important issue. In the case of a peri-
odic workload, the sampling period usually matches the “natural” period. For
example, in video transmission it is usually the video frame period. The bit
rate during a sampling period is, in general, variable. The proposed method
assumes that traffic arrives at uniform rate. In other words, if we have N bits
in a sampling period, the inter-arrival distribution is deterministic with value
1/N . Some authors, like [27] or [29], consider that the arrival process during a
sampling period is approximately Poisson with rate λ. This allows to analyse
the system by solving a M/D/1/N queueing system as a function of λ. The
method proposed in this paper is not based on the solution to the Poisson
process but on defining histogram operators and iterative algorithms to solve
the steady state of a stochastic process.

2.1 Histogram basics

Statistical variables are, in general, defined over a continuous range of values. A
grouped probability distribution (gpd) is the probability function of a random

2 For convenience we use the bit as the base unit. There is no variation in the
precision of the results using another unit (bytes, packets)

4

variable defined over intervals: the probabilities of values in an interval are
grouped together. Intervals will be also referred as classes. All intervals are
the same width and class 0 should always represent the probability of workload
zero or close to zero. Table 1a shows an example gpd.

[Fig. 1 about here.]

Classes in a gpd will be characterised by the following attributes: class number
i, interval lower limit x−

i , interval upper limit x+
i , interval midpoint xi, interval

probability pX(i) and cumulative probability p+
X(i) =

∑i
0 pX(i).

The example of table 1a corresponds to a workload that has been analysed
using a sampling period of TX = 0.1 s. The range of the transmission units
measured during this sampling period is in [0, 120[kb. This range is divided
into n = 6 intervals or classes so the interval length is lX = 20 kb. Class 0
corresponds to interval [0, 20[kb whose midpoint is x0 = 10 kb. The proba-
bility that the traffic source produces a number of transmission units in this
interval is pX(0) = 0. Similarly, class 1 corresponds to interval [20, 40[kb with
probability pX(1) = 0.1, and so on.

A histogram is a form of a bar graph representation of a gpd. Fig. 1b shows
the histogram of table 1a. The x-axis of this graph will be either the class
number i or its midpoint xi.

A gpd X is usually managed through two arrays of values: the array of interval

midpoints, denoted as Ẋ, and the array of interval probabilities, also referred
as probability mass function (pmf), denoted as X :

X

Ẋ = [xi : i = 0 . . . n − 1]

X = [pX(i) : i = 0 . . . n − 1]
(1)

Formally: pX(i) ≡ P (x−
i ≤ X < x+

i).

In the example of Fig. 1a:

X

Ẋ = [10, 30, 50, 70, 90, 110]

X = [0, 0.1, 0.4, 0.2, 0.15, 0.15]

Its important to note that a gpd X is usually defined over a domain of real
numbers Ẋ while its corresponding pmf X is usually defined over a domain of
integers i = 0 . . . n − 1 representing the class numbers 3 . Most of the calculus

3 Although traffic workload is in the natural domain, we generalize the gpd defini-
tion using a real domain

5

and algorithms performed on a gpd X only involve its pmf X . This means that
they depend on the class number rather than Ẋ. However, when several gpd’s
are involved in a calculation (for example in a convolution), the correctness
of the results requires to use the same sampling period (TX) and the same
interval length (lX).

The correspondence between some value x in the domain of X and its class
number x̂ is given by the following equation:

x̂ = classX(x) =
⌊

x

lX

⌋

(2)

For example, given x = 55, its corresponding class can be obtained as: x̂ =
classX(55) =

⌊
55
20

⌋

= 2.

Some important operators on random variables that will be used throughout
the paper are introduced next.

• The mean value (or expectation) of gpd X is defined as: E[X] =
∑n−1

0 pX(i) · xi.
Analogously, the mean value of pmf X is defined as E[X] =

∑n−1
0 pX(i)·i.

In the previous example, E[X] = 67 kb and E[X] = 2.85. Recall that this
value is referred to the sampling period of TX = 0.1 s.

• The maximum midpoint of X is defined as M [X] = max(xi : pX(i) > 0)
and M [X] = n − 1), In the previous example, M [X] = 110 kb and
M [X] = 5.

• The scalar multiplication of X by a constant c is a new random variable
Y = c · X where yi = c · xi and pY (i) = pX(i) for i = 0 . . . n. Note that
variable Y has the same pmf than X, that is, X = Y . Multiplying by a
scalar only affects the interval length: lY = c · lX .

• The convolution of two random variables X and Y , denoted as X ⊗ Y ,
is the statistical equivalent to the notion of summing two deterministic
variables. The results is a new variable Z whose domain is in the range
[0, M[X] +M[Y]] and with an associated pmf Z = [pZ(i) : i = 0 . . . n + m − 2]
where n and m are the number of intervals of X and Y respectively, and
pZ(i) =

∑i
k=0 pX(i − k) · pY (k). The convolution is only defined for vari-

ables with the same sampling period and the same interval length. Con-
volutioning variables with different interval lengths require previously
adjusting them to the same length using the transformations defined
next. The convolution has the following interesting property: E[X ⊗Y] =
E[X] + E[Y].

• Increasing the zoom factor of variable X by k means applying a transfor-
mation ∆+

k : X −→ Y to increase the number of classes of X in a uniform
way by uniformly splitting each interval of X into k intervals of Y . The
interval length of Y is lY = lX

k
and its pmf Y = [pY (j), i = 0 . . . m−1] has

a larger number of classes m = k × n. Probabilities pY (j) are obtained
by linear interpolation of values pX(i) in the range i : 0 . . . n − 1 to the

6

range j : 0 . . . m − 1.
• Analogously, decreasing the zoom factor of X by k means applying a

transformation ∆−
k : X −→ Y to reduce the number of classes of X by

merging k consecutive intervals of X (starting at interval 0) into one
interval of Y . The interval length of Y is lY = lX × k and its pmf
Y = [pY (j), i = 0 . . . m − 1] has a shorter number of classes m = ⌊n

k
⌋.

Probabilities pY (j) are obtained by summing the probabilities of the k
intervals of X that correspond to interval j of Y .

2.2 Histogram number of classes and accuracy

One of the most critical problems of the histogram method is accuracy. The key
issue is to determine the number of classes of a histogram. This is in general
a trade off between representation economy and precision: with too many
intervals, the representation will be cumbersome and histogram processing
expensive, since the complexity of algorithms mostly depends on the number of
classes but, on the other hand, too few intervals may cause loosing information
about the distribution and masking trends in data.

Another important problem is that histogram processing with a low number of
classes results in important precision errors. It is paradoxical that these errors
occur even if that low number of classes is enough to properly describe a given
workload without loosing much information. The reason for those inaccura-
cies seems to be the effect of the low number of classes when using iterative
algorithms. The solution proposed in this paper consists in overclassing the
histogram which is a transformation for “artificially” increasing the number of
classes by splitting each interval into m intervals with the same probabilities.
That implies increasing the zoom factor of the distribution by m.

3 The histogram method

This section introduces the problem formulation and its resolution using his-
tograms. This resolution includes the mathematical foundation and the prac-
tical algorithms.

3.1 Problem statement

The problem addressed in this paper is an end-to-end transmission system.
The analysis starts by considering a single node of this system. Such a node is a

7

router processor that multiplexes a set of traffic streams (see Fig.2 (a)). Input
traffic is supplied through buffers of finite or infinite capacity. These buffers
accumulate pending traffic that cannot be transmitted over a sampling period.
The system will be said to be stable if the pending traffic converges to a finite
value. The goals of the analysis are studying system stability, transmission
delay and some other QoS parameters as data loss rates.

Traffic generated at a data source is, in general, time dependent. According
to this, the traffic arrival rates on a node will be also a set of time dependent
functions, denoted as: {Ak(t), k : 0 . . . m}, where m+1 is the number of traffic
sources. We will start our discussion by expressing Ak(t) as time dependent
functions and they will be later transformed into discrete statistical variables.

The service time for a particular traffic source, denoted as Sk(t) will be de-
fined as the bandwidth allocated to stream i at time t. In the general case
(Fig. 2 (a)), the service time for source k is a function of the set of all traf-
fic sources and the packet scheduling algorithm ̥. This can be expressed as:
Sk(t) = ̥({Ak(t), k : 0 . . . m − 1}).

Expressing the service time as a function of all traffic sources leads to a diffi-
cult problem. However, the problem can be decomposed into m independent
problems, as illustrated in Fig.2 (b), by requiring the hypothesis of strong

workload isolation: every data source is assigned a constant bandwidth that is
time and workload independent: Si(t) = Ri,∀t.

This is an ideal assumption because it only occurs in the fluid model of GPS [3].
Some other algorithms exhibit a weaker form of this property that will be
referred simply as workload isolation: the average service time is constant. This
is true for GPS based algorithms with full bandwidth utilisation. The general
case where the service time is a complex function of all traffic sources will be
analysed using the, so called, interference method. This kind of analysis is usual
in real-time systems and has been used in [30] for an statistical study of the
RM (Rate Monotonic) algorithm and in [31] for the case of the GPS (General
Processor Sharing) algorithm. This paper concentrates on the strong workload

isolation hypothesis. The interference method will be shortly introduced in
section 6, but it is not fully developed in this paper.

It is worth to say that in current networks strong workload isolation is usually
achieved in a simple way: all traffic sources with the same output link are
aggregated into one aggregated traffic. This aggregated traffic uses all the
bandwidth R of the output link and has its own buffer queue Q. Therefore,
all the work presented here can be applied to the aggregate traffic flows.

[Fig. 2 about here.]

8

3.2 Method foundation

This section develops a method for computing the buffer length and system
stability with the hypothesis of strong workload isolation, that is S(t) = R 4 .
This scenario assumes a single traffic source served at a constant rate. The
traffic arrival rate A(t), will be expressed, in principle, as a time dependent
function. Assuming a buffer of finite capacity l, the queue or buffer length
Q(t) at a given time t can be expressed as:

Q(t) =
∫ t

0
φl

0(A(t) − S(t)) dt (3)

where, S(t) is the node service rate and operator φ limits buffer lengths so
they cannot be negative and cannot overflow value l either. This operator is
defined as follows:

φb
a(x) =

0, for x < a

x, for a ≤ x < b + a

b, for x ≥ b + a

(4)

This expression can be rewritten as a recurrence equation (known as Lindley’s
equation [32]) assuming a discrete time space τ = t0, t1, t2, . . . where tk = k×T
is a multiple of the sampling period TX . This way, functions A(t), S(t) and
Q(t) can be replaced by discrete time functions:

Q(k) = φl
0(Q(k − 1) + A(k) − S(k))

In this expression Q(k) is the cumulative number of bits that the traffic source
puts into the buffer during the k-th sampling period. A(k) is the number of
bits that arrives at period k. Analogously the service rate S(k) is the number
of cumulative bits that the router removes from the buffer during the same
sampling period. The service rate can be expressed as a constant r, that is the
output rate R multiplied by the period TX (r = R × TX):

Q(k) = φl
0(Q(k − 1) + A(k) − r) = φl

r(Q(k − 1) + A(k))

The foundation of the histogram method basically consists of suppressing the
time dependence of A(k) in the previous expression and replacing it by a
discrete random variable with pmf A = [pA(k), k = 0 . . . n]. This way, previous
equation can be expressed transformed into a statistical equation:

Q(k) = Φl̂
r̂(Q(k − 1) ⊗A) (5)

4 From now on, for notational convenience, we drop the subscript i

9

where Q(k) is now a stochastic process, r̂ = classX(r) and l̂ = classX(l),
operator ⊗ stands for the standard statistical convolution and the bound op-

erator Φb
a() is defined as the statistical generalisation of the previously defined

φb
a() operator:

Φb
a(X) = Φb

a([pX(0), pX(1) . . . pX(n)]) =

=
[a∑

i=0

pX(i), pX(a + 1), pX(a + 2), . . . , pX(b + a − 1),
n−1∑

i=b+a

pX(i)
]

(6)

Notation Φa(X) will be used as an equivalent for Φ∞
a (X).

As an example of how this operator performs, given X = [0, 0.1, 0.4, 0.2, 0.15, 0.15],
then Φ2(X) = [0+0.1+0.4, 0.2, 0.15, 0.15] = [0.5, 0.2, 0.15, 0.15] and Φ2

2(X) =
[0 + 0.1 + 0.4, 0.2, 0.15 + 0.15] = [0.5, 0.2, 0.3].

Note that the transformation to the histogram class domain produces dis-
cretization errors. The effect of this transformation will be studied in detail in
the evaluation experiments.

As previously said, Q(k) has become a discrete time stochastic process. More-
over, this stochastic process is shown to be Markovian in appendix A.1. The
evolution in time of this stochastic process can be analysed in terms of the
mean value of A.

When M [A] ≤ r̂ (r = R × TX), then the buffer length is zero because it is
easy to prove, from its definition, that Φr̂(A) is zero in this case.

The case when M [A] > r̂ is the most interesting one because, unlike worst-
case kind of analyses, statistical analyses allow arrival rates to exceed occa-
sionally processor capacity during transitory overloads and still have a stable
system depending on E[A]. Two subcases must be considered: infinite and
finite buffer.

In the infinite buffer case, the system converges to a steady-state pmf iff
E[A] ≤ r̂. With a finite buffer, the process always converges because it is
always bounded by operator Φb

a(). Although intuitive, this conditions are for-
mally proven in appendixes A.2 and A.3 respectively.

System evolution for the above considered cases is shown in Figs. 3, 4 and 5.
The example workload A = [0, 0.1, 0.4, 0.2, 0.15, 0.15] of Fig. 1b has E[A] =
2.85 and M [A] = 5. Figure 3 shows that the stochastic process converges to a
steady state solution for an infinite buffer and a constant service rate r̂ = 3,
since E[A] ≤ r̂. Figure 4 shows the evolution for the case of an infinite buffer
and r̂ = 2. With E[A] > r̂ the system is unstable and the pmf of the buffer
length is shifted to the right in each iteration. Figure 5 shows the situation

10

with r̂ = 2 and a finite buffer b̂ = 30. It can be seen that the probability of
buffer full tends to 1.

[Fig. 3 about here.]

3.3 Algorithm for buffer length calculation

This subsection describes in detail the algorithm to calculate the buffer length
probability mass function and illustrates it with examples.

According to previous subsection the buffer length problem is, in general, a
stochastic process whose steady state solution can be calculated through an
iterative process. The algorithm for calculating the steady state probability
mass function of the buffer length is shown in Fig.6 and will be referenced as
the HBSP (Histogram Based Stochastic Process) algorithm.

[Fig. 4 about here.]

The explanation to this algorithm is provided through the example of Fig. 1a.
Recall that this workload has been obtained with a sampling period of TX =
0.1 s and it has 6 intervals of length lA = 20kb whose midpoints are Ȧ =
[10, 30, 50, 70, 90, 110] expressed in kb. The mean and maximum values of A
are E[A] = 57 kb, M [A] = 120 kb. The corresponding histogram is shown in
Fig. 7a and the pmf is A = [0, 0.1, 0.4, 0.2, 0.15, 0.15] .

The algorithm is described using an output rate R = 600kb/s (that is, a
service rate of r = 60 kb per sampling period) and a bounded buffer length
of 100 kb. In terms of the pmf, those values correspond to r̂ = classX(r) = 3
and b̂ = classX(b) = 5.

[Fig. 5 about here.]

In the first iteration of the HBSP algorithm, the buffer histogram Q is obtained
by summing classes 0..3 of A (this workload is transmitted without queueing)
and shifting it to the left (Fig. 7d):

Q(1) = Φ3(A) = [0.7, 0.15, 0.15]

The probability that the buffer is 1 and 2 is 0.15 in each case. Since the buffer
length is b̂ = 5 there is no probability of exceeding buffer capacity after the
first iteration but, in general, the bound operator establishes an upper limit
on the queued workload due to finite buffer length:

Q(1) = Φ5
3(A) = [0.7, 0.15, 0.15]

11

In the second iteration (next sampling period), the buffer already stores a
pending workload of Q(1) and, in addition, a new workload A arrives. The
cumulative workload histogram in the buffer after this iteration, is the convo-
lution of the previous histograms (Fig. 7b):

I(2) = Q(1) � A =

= [0, 0.0700, 0.2950, 0.2150, 0.1950, 0.1575, 0.0450, 0.0225]

Now the effect of the finite buffer (5 classes) will produce a loss in the cases
where there is a probability that the buffer length is greater than 5. For ex-
ample, for a 6 units length, 5 units are stored into the buffer and the other
one is discarded, so this probability has to be added to the probability class
5. Analogously, in the case of 7 units, 2 are accumulated and 5 are discarded.
According to this the result of the second iteration is (Fig. 7e):

Q(2) = Φ5
3(I(2)) = [0.5800, 0.1950, 0.2250]

For a precision of ε = 1 × 10−4 the algorithm converges after 41 iterations to
the following solution (see Figs. 7c and 7f):

Q= [0.3275, 0.1625, 0.1699, 0.1291, 0.1077, 0.1033]

I = [0, 0.0327, 0.1472, 0.1475, 0.1625, 0.1699, 0.1291, 0.1077, 0.0562,

0.0317, 0.0155]

The values of Q̇ and İ can be calculated taking into account that the interval
length is 20 kb:

Q̇ = [10, 30, 50, 70, 90, 110] kb

İ = [10, 30, 50, 70, 90, 110, 130, 150, 170, 190, 210] kb

3.4 QoS parameters

Some of the most important performance parameters of a router are delay
and loss ratio. This section shows how to obtain these parameters using the
histogram method.

The router delay D is the time between message arrival at that station and
message departure from the station. It is the sum of the queuing delay U and

12

the transmission delay T . This can be expressed in statistical terms as:

D = U ⊗ T (7)

The queueing delay is the time spent by the message waiting for previous
buffered messages to be transmitted. In the case of a router with a output
rate of R, and a buffer length characterised by a gpd Q the queueing delay is
proportional to Q, so it has the same pmf.

U =
1

R
· Q (8)

In statistical terms, multiplying Q by a scalar 1
R

(scalar multiplication) only

affects its interval length (and thus U̇). Then the interval length of U is lU =
lQ/R, expressed in seconds.

The transmission delay is the time spent by the network interface in processing
the message and it is closely related to the transmission speed. Assuming d is
the delay for any transmission unit of size lesser than the MTU (Maximum
Transmission Unit) and using the same interval length of U we obtain the class
interval as d̂ = classT (d). In statistical terms, T is a deterministic distribution
of the form T = [t0, . . . , td̂] with ti = 0 for i ≤ d̂ and ti = 1 for i = d̂ and

Ṫ = [lU , 2 · lU , . . . d̂ · lU]. Then, D = U ⊗T can be calculated convolutioning Q
and T :

D = Q⊗ [0, . . . , 0, 1k] (9)

As an example, consider the stationary buffer length of the example of previous
section, obtained with a service rate R = 600 kb/s and assume that the
transmission delay is d = 0.1 s. First, we obtain the interval length of U as
lU = 20/600 = 0.0333s. The class of d is d̂ = classU(0.1) = 3. The router
delay is calculated as:

D=Q⊗ T =

= [0.3275, 0.1625, 0.1699, 0.1291, 0.1077, 0.1033] ⊗ [0, 0, 0, 1] =

= [0, 0, 0, 0.3275, 0.1625, 0.1699, 0.1291, 0.1077, 0.1033]

and the array of midpoints is:

Ḋ = [0.033, 0.066, 0.1, 0.133, 0.166, 0.2, 0.233, 0.266, 0.3]

Another QoS parameter is the overflow probability, that is usually used as an
approximation of the loss ratio, due that is most amenable to mathematical
analysis [20]. The overflow probability is defined as the probability that the

13

number of workload units in the buffer exceeds a given limit. This probability
can be easily obtained using the buffer histogram with infinite buffer.

P (Q ≥ t) =
n−1∑

i=t

xi (10)

The loss ratio is defined as the ratio between the number of lost transmission
bits and the number of arriving transmission bits:

Ploss =
E[C]

E[A]
(11)

where the lost transmission bits can be easily calculated using the bound
operator:

C = Φr̂+b̂(I) (12)

with I being the cumulative workload pmf, r̂ the service rate class and b̂ the
buffer length class.

The calculus of the loss ratio can be clearly understood using the example of
previous section. Consider the stationary cumulative workload pmf (I) (see
Fig.7c). With a service rate class r̂ = 3 and a buffer length class b̂ = 5, from
a workload of 10 units, 3 units are sent, 2 units are stored in the buffer and
2 units are lost. Therefore, the loss pmf (C) can be obtained by shifting (with
accumulation) r̂ + b̂ = 3 + 5 = 8 positions to the right. Using the bound
operator:

C = Φ8(I) = [0.9528, 0.0317, 0.0155]

Histogram C reflects that 0.9528 is the probability of no loss, 0.0317 is the
probability of 1 unit loss and 0.0155 is the probability of 2 units loss. According
to this, the probability of at least 1 unit loss is the following weighted sum:
E[C] = 0.0317 ∗ 1 + 0.0155 ∗ 2 = 0.0627. Then, the loss ratio is the proportion
between the lost units and the arrival workload:

Ploss =
E[C]

E[A]
=

0.0627

2.85
= 2.2% (13)

4 Evaluation

This section presents an evaluation aimed to evaluate and to validate the
HBSP method. The evaluation comprises experiments with synthetic traffic,
experiments with real traffic traces and comparisons with other methods. One
of the key aspects of the experiments is to evaluate the accuracy of the HBSP

14

method. This is achieved by comparing analytical results of the HBSP with re-
sults obtained through simulation. All the experiments of the HBSP algorithm
use an accuracy factor of ε = 1 × 10−6.

4.1 Synthetic Workload Experiments

The goal of these experiments is to evaluate the buffer length and loss ra-
tio using the HBSP algorithm and comparing results with the ones obtained
through simulation. Two synthetic arrival workloads are used in this subsec-
tion: the first one uses no grouping of classes, so no discretization errors can
occur. The second one corresponds to a grouped probability distribution and
it is aimed to evaluate discretizations errors.

Simulations were performed using a synthetic traffic trace generated from
a given arrival workload pmf A. This means that the synthetic trace was
generated to have a pmf of A. The simulation is performed assuming that
generated traffic arrives at uniform rate. If a trace consists of n samples, the
simulation obtains the buffer length Qi and loss units for each sample. The
final result is a vector of buffer lengths Q = {Qi; i = 0..n} whose pmf (QS)
can be easily obtained, and the final loss ratio Ploss.

The first experiment was done with an arrival workload A =[0.0, 0.3, 0.1,
0.3, 0.1, 0.1, 0.05, 0.05] (see Fig.8a). The interval length was assumed to be 1
unit. This means that the traffic range of A is from 0 to 7 units with a mean
value E[A] = 2.95. A synthetic traffic with 20,000 samples was generated
using A (see Fig.8b). The output rate of the node was set to R = 4 units/sec
(r̂ = r = 4) and an infinite buffer was assumed. Fig.8c shows the histogram
obtained using the algorithm and by simulation. The experiment was repeated
100 times with different traffics in order to obtain a mean difference between
both histograms. The average normalized difference between the histogram
generated buffer and the simulated histogram buffer (|Q−QS|) was 0.003843±
0.000241 (that is, with a 95% confidence interval of [0.003601,0.004084]).

[Fig. 6 about here.]

The second experiment used the same synthetic traffic of previous experiment.
The output rate was also set to R = 4 units/sec (r̂ = r = 4), but the buffer
length was set to b = 6 units (b̂ = 6). Fig.8d shows the histograms obtained
using the algorithm and by simulation. As in the previous experiment, the
differences are negligible. The obtained average difference for 100 experiments
was 0.003350 ± 0.000206. The estimated loss ratio was Ploss= 0.002725 and
the simulated one was 0.002739 ± 0.000074 (very close to the estimated loss
ratio).

15

The goal of the third and fourth experiments is to evaluate the effect of dis-
cretization, that is, reducing the number of classes by grouping them by a
given factor. The sample period for these experiments was set to T = 0.1
sec. The workload was grouped in intervals of length 5 units to define the
workload histogram A = [0.1, 0.3, 0.2, 0.1, 0.1, 0.1, 0.05, 0.02, 0.02, 0.01].
This corresponds to a grouped distribution whose midpoints are Ȧ = [2.5,
7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5] (see Fig.9a) with E[A] = 2.59
and E[A] = 15.45. A synthetic traffic of 20,000 samples was generated from
the grouped distribution, so it does not model accurately the original traffic.
This traffic ranges from 0 to 49 units and the first 500 samples are shown
in Fig.9b. As stated before, the goal of these experiments is to evaluate the
discretization errors.

[Fig. 7 about here.]

For the third experiment the output rate was set to R = 300 units/sec (r = R×
T = 30 units and r̂ = 6) and an infinite buffer was considered. Fig.9c shows the
histogram obtained using the HBSP algorithm (Q) and simulating the buffer
load (QS) (lines ’Simulation’ and ’Histogram’) 5 . Graphically, the difference
between the histograms is low, but non negligible. After repeating 100 times
the experiments the average difference between the HBSP and simulation is
0.030041 ± 0.000187.

In the fourth experiment the output rate was set to R = 200 units/sec (r =
R × T = 20 units and r̂ = 4) and the buffer length was set to b = 30 units
(b̂ = 6). Fig.9d shows the histograms for the HBSP method and simulations.
The difference is now more significant for some classes. The estimated loss
ratio was Ploss= 0.000234. The experiments were repeated 100 times in order
to obtain the average difference for the histogram and loss ratio. The obtained
average difference for the histograms was 0.214726± 0.000513 and for the loss
ratio 0.013460 ± 0.000149. It can be said that there is a loss of accuracy due
to reducing the number of classes of the workload definition: for example, in
the second experiment the resulting pmf Q has only 5 classes.

The experiments were repeated overclassing the original workload in order to
see if the differences were due to the information loss that grouping conveys or
simply to the effect of a reduced number of classes in the algorithm. This way,
A was overclassed by a factor of 5. The new histogram has 50 classes and an
interval length of 1 unit. The results are shown in the Fig.9c and Fig.9d (line
’Histogram x 5’). Now, the resulting pmf Q has more clases (about 25) and
the results are more accurate. In the case of infinite buffer, the difference was
reduced to 0.003552± 0.000211. With finite buffer, the difference was reduced
to 0.023018± 0.000442 and the loss ratio was 0.014651. This results are more

5 The histogram is now represented using a line chart with logarithmic Y scale to
see the differences in detail. Classes are marked with points.

16

accurate than using the histogram without overclassing. The influence of the
number of classes and overclassing will be studied in more detail in a further
subsection.

The experiments were repeated with different histograms, buffer and rate val-
ues. The results were very similar as the previous ones: the difference between
the results obtained using the HBSP algorithm and the simulations were very
low.

4.2 Real Traffic Experiments

There are several real traffic traces available such as the Qbone traces, NLANR
from the University of Auckland, MAWI from the WIDE backbone, etc. Real
traffic experiments are based on the MAWI traffic traces [33] due to their
high resolution. This is a trace representing an IP traffic from a network link
and its is suitable to test the histogram model. Specifically, we took a 1-hour
trace from May 14, 1999 11:00 to 12:00 of a US-Japan link. This traffic trace
has 6,016,846 packets with a total size of 3.6 Gbytes and an average rate of
8.43 Mb/s. These MAWI traces are in tcpdump raw format (near 9 Gbytes of
traces), so we distilled them to obtain a simple file that contains the arrival
time (in microseconds) and size (in bytes) of all the packets transmitted during
this hour. Using a sampling period of T = 40 ms (25 samples per second), the
resulting traffic trace has 90,000 frames (see Fig.10a). This is a bursty traffic
with a burst ratio of 3.12 (the burst ratio is defined as the peak rate divided
by the mean rate). The arrival load histogram of this traffic using 10 classes
is shown in Fig.10b and has E[A] = 0.253 Mb.

Simulations of a network node using this traffic trace were performed, although
these simulations differ from synthetic workloads in that packet arrivals are
given by the traffic trace, so it is not necessary to assume a uniform packet
arrival rate. That leads to an event driven simulation. In each period, the sim-
ulation calculates the buffer length and lost packets. The simulation histogram
and packet loss can be easily derived from these data. As the MAWI trace has
a great resolution, this simulation is very realistic.

[Fig. 8 about here.]

In the first experiment, an infinite buffer was considered and the output rate
was set to R = 9 Mb/s (r = 0.36Mb). The HBSP algorithm was executed
considering the following arrival workloads: a) a pmf of 10 classes (as shown in
Fig.10b) , b) a pmf of 100 classes and c) 10 classes with an overclassing factor
of 10. For each simulation a histogram (QS) was obtained. The results are
in Fig.10c and show that there is an accuracy loss for buffer lengths greater
than 50Kb. This is mainly due mainly to accuracy in performing convolutions:

17

values more to the right are the result of accumulating a lot of products. Nev-
ertheless, the difference between the simulated histograms and the histogram
obtained applying the algorithm are about 0.072, so they are really close.

In the second experiment the output rate was set to R = 7 Mb/s (r = 0.27 Mb)
and the buffer length was set to b = 0.2 Mb. The same workloads than in
previous experiments were considered. Fig.10d shows the results. Histograms
with 100 classes and 10 classes with overclassing exhibit very accurate results.
Regarding the loss ratio, the simulation provided a value of 0.138464 while
the HBSP algorithm estimated a value of 0.215495 with 10 classes, 0.136039
with 100 classes and 0.136196 with 10 classes and overclassing, that are very
close to the simulated one.

Previous experiments were also repeated with different traffic traces (using
MAWI traces from another day and hour and even a trace from the NLANR
repository), output rates and buffer lengths. Results were very similar to the
ones presented here.

4.3 Accuracy

This subsection is devoted to identify and evaluate factors that may affect
results accuracy.

The first experiment analyses the relation between buffer length and loss ratio.
Loss ratios are calculated for different output rates varying the buffer length
between 10 kb and 1 Mb (this corresponds to a maximal queue delay of nearly
0.1 s, that is nearly to the ITU G.114 delay recommendations). Results are
presented in the form of a loss ratio curve of Fig.11a. Histogram prediction of
loss rate is very accurate, since it is very close to simulations. Best results are
obtained when the loss ratio is high. There is a loss of accuracy when the loss
ratio is very low. This is mainly due to the convolution operator.

[Fig. 9 about here.]

The second experiment analyses the accuracy when we use long-term traces
instead of short-term traces. Previous experiments use a 1-hour trace for ob-
taining the histogram, producing very good results. This experiment uses a
24-hour trace from May 14, 1999 (the same day of the previous trace), a rate
R = 8 Mb/s and a buffer length b = 0.2 Mb. This means using long-term
traces instead of short-term traces. Results are still very accurate, as shown
in Fig.11b. Regarding the loss ratio, the HBSP method predicted a value of
0.0064, while the simulation yielded 0.016. In summary there is a little loss of
accuracy when using long-term traces, as it could be expected, due to infor-
mation loss in the histogram definition.

18

The third experiment analyses the relation between the sampling period and
accuracy. This experiment shows the differences between histograms obtained
using the HBSP algorithm and simulations varying the sample rate from 0.01 s
to 20 s. Results are shown in Fig.12a and Fig.12b. There is a little precision
loss using higher sampling periods.

[Fig. 10 about here.]

The last experiment evaluates the relation between the number of classes of a
histogram and accuracy. Previous experiments already showed that accuracy
depends on the number of classes and the overclassing factor. Histograms can
be a powerful and compact description of the traffic as long as they allow to
obtain good accuracy a low number of classes. The key questions are: how
many classes are necessary to get a good accuracy? and, when is necessary to
use overclassing in order to obtain good results?.

This experiments uses the same scenarios than previous subsection (the 1-
hour MAWI traffic). The output rate was set initially to R = 9 Mb/s and an
infinite buffer was considered. The number of classes was varied from 6 to 100
and 4 histograms were calculated: the first one using the original histogram
with no overclassing and the other 3 using overclassing factors of 5, 10 and
20. The normalized difference between these histograms and the one obtained
through simulation is shown in Fig.13a. More experiments were done with a
finite buffer length of b = 0.2 Mb and an output rate of R = 7 Mb/s and
b = 0.2 Mb. Results about the buffer length probability are in Fig.13b. The
loss ratio is compared with the loss ratio of simulations in Fig.13c.

[Fig. 11 about here.]

Results show that the main effect of overclassing is to smooth the results
reducing the original peeks. It can be also seen that there is no significant
variation using a overclassing factor greater than 10. Regarding on the number
of original classes, it can be seen that accuracy is not greatly improved using
more than 15 of 20 classes. For the original histogram, accuracy is better in
some cases using more than 60 classes (see Fig.13a) but in some other cases
it is worst. Therefore, in the average case, it is better to use overclassing. The
final conclusion is that the best results are obtained using 10 to 20 classes
with an overclassing factor of 10.

4.4 Comparison with other methods

This section compares the proposed HBSP method with previous published
methods for analysing buffer length and loss ratio. Regarding the calcula-
tion of the buffer length, the best known approach is the method introduced

19

by Skelly and Shroff (known as the Histogram Model [27] or the General-

ized Histogram Model [28] and used with few modifications in [34] and [29]).
This approximation is based on resolving an M/D/1/N queue for each ar-
rival rate of the histogram. We implemented this method and compared the
obtained buffer length histogram with the one obtained using the HBSP al-
gorithm. Fig.14a shows that the differences between the HBSP method and
the M/D/1/K method are really high. The results using the M/D/1/N are
very bad. The problems with the M/D/1/K is that the buffer curve collapses
when the buffer size if high. The results presented in [27] used very low buffer
lengths (about 50 cells) so the results were more accurate. Nevertheless when
larger buffer (about 500) the buffer curve begins to collapse.

[Fig. 12 about here.]

Regarding the loss ratio, there are a lot of methods for obtaining the packet
or cell loss ratio. The most simple methods use only the peak or mean band-
width of the traffic. Other methods obtain the loss ratio of a multiplexed (or
aggregated) traffic in a network node based on certain known characteristics
of the individual traffics (see [16,34,35] and references inside). These methods
can not be compared with the one presented here because we obtain directly
the loss ratio from the aggregated traffic. Other methods uses a fractal (or
self-similar) model of the traffic (see [20, 25, 26] and references inside). The
challenge is very interesting: try to model a traffic with 3 or 4 statistical
parameters and feed these parameters through a process for obtaining perfor-
mance results similar to the ones using original traffic. Until now, the results
presented are inaccurate and depends mainly in the traffic statistical charac-
teristics (it must be Gaussian). A most similar approach to the one presented
here is partially described in [28]. In this case the traffic is temporally divided
into parts, and in each part we obtain the loss ratio. Is easy to compare this
approach with our HBSP method. In Fig.14b we can see that the results of
using ‘temporal division’ (the X samples curves) versus using ‘histogram divi-
sion’. The results show that only with 10000 samples the ‘temporal division’
approaches to HBSP method.

5 Applications of the HBSP algorithm

There is a wide spectrum of applications of the HBSP method. We can obtain
the traffic QoS parameters, as loss ratio or node delay using the HBSP method.
Using the router delay of the nodes we can obtain the network delay pmf DN .
This pmf is obtained as the sum (convolution) of the node pmfs that traverses
a packet:

DN =
⊗

i∈path

Di (14)

20

This pmf is very useful because we can obtain the mean delay, or for example,
the probability that a packet is delayed more than a certain value. For example,
if we transmit video or audio, the delay histogram can be useful in the end
nodes to adapt their transmissions rates or to configure the buffer in the
reception nodes. This information can be used for admission control as well.

Another important application is for traffic provisioning and network config-

uration. Optimal provisioning of network resources is crucial for reducing the
service cost of network transmission. This is the goal of Traffic Engineering :
the design, provisioning, performance evaluation and tuning of operational
networks. The fundamental problem with provisioning is to have methods
and tools to decide the network resource reservation for a given Quality of
Service requirements [36]. Therefore, the HBSP method can be very useful for
Traffic Engineering.

The HBSP method allows to obtain the load histogram of the nodes of a
network. These histograms can be used to configure the network. It also allows
to evaluate parameters like the loss ratio (for a given buffer and output ratio),
the node delay, the buffer/output ratio needed for a required loss, etc. One
important decision that must be taken is the time-scale of the provisioning.
The measured traffic can be a long-term trace (daily or weekly traces) or a
short-term trace (hourly traces). This depends on the network capability to
support dynamical variation in the reservation of the channel resources (for
example, an hour) (see [37]).

A great advantage of the HBSP method is the easy implementation of the
histograms. Is very easy to capture and store a load histogram with few classes
(about 10) in a network node.

6 Extending the method

The proposed method assumes the hypothesis of strong workload isolation as
a way to make several traffic flows in a router independent and, thus, easing
system analysis. This hypothesis allows to consider that every traffic source
has a constant service rate and there are no interferences or variations in
the service rate due to other traffic sources which are multiplexed by the
router using a packet scheduling algorithm. This section briefly outlines the
implications of relaxing the hypothesis of workload isolation. This leads to a
much more complex analysis, but it also shows the power of the method for
analysing packet scheduling algorithms. It will be shown that, in this case, the
probability distribution of the buffer length is also a stochastic process. The
solution to this problem is a method that will be referred as the interferences

method.

21

The service rate for each workload depends, in general, of the multiplexer
bandwidth R, the set of workloads A = {Ak, k : 0 . . . m}, and the packet
scheduling algorithm, referred as ̥.

The interference histogram of workload set A on workload Aj in a multiplexer
with scheduling algorithm ̥, denoted as ̥A(Aj), is defined as the histogram
of workload Aj after being processed by a router (at the output of a router),
that is, multiplexing a workload set A using the scheduling algorithm ̥.

As an example of the interferences method, consider the workload A0 and the
workload set A = {A0,A1} whose execution time histograms are shown in
figures 15a and 15b respectively. A0 has a uniform execution time in the inter-
val [1, 5] and A1 is a deterministic workload with execution time 3. Assuming
a GPS algorithm and assigning the same weight to both workloads, the in-
terference of A1 on A0, i.e. ̥A(A0) is shown in Fig.15c. In the interval [1, 3]
both workloads share the processor with equal weight, so the time to execute
A0 in this interval is double than when A0 is executing with fully processor
utilization. At time 3 workload A1 finishes its execution and A0 gets the whole
processor bandwidth. So when the execution time of A0 is in the interval]3, 5]
̥A(A0) is what A1 takes to complete plus the remaining execution time of
A0 executing with 100% of the processor bandwidth. This can be calculated
by making zero the elements of A0 in the interval [0, 3] and convolutioning it
with A1: [0, 0, 0, 0, 0.2, 0.2] ⊗ [0, 0, 0, 1] = [0, 0, 0, 0, 0, 0, 0, 0.2, 0.2].

[Fig. 13 about here.]

The calculus of the buffer length of Aj when workload isolation does not hold
can be expressed as the following stochastic process:

Qj(K) = Φl
r(̥A(k−1)(Qj(k − 1) ⊗Aj)) (15)

where A(k − 1) is the interfering task set in sampling period k. After the first
iteration, the task set that interferes Aj may have changed. This is because
workloads in the new sampling period have to be convolutioned with the corre-
sponding pending workload. In other words, in each iteration, k the interfering
workload has to be recalculated as:

A(0) = A (16)

A(k) = {Qj(k − 1) ⊗Aj, i = 1 . . . m} (17)

The calculus of ̥A(Aj) is ̥-dependent and may have a high computational
cost for some scheduling algorithms, but it allows to accurately find the solu-
tion to the buffer length problem in the general case. A method for computing

22

̥A(Aj) in the case of the GPS algorithm is presented in [31]. In [38] a similar
method is used for the case of the RM (Rate Monotonic) algorithm in the
context of real-time systems.

Summarizing, it could be stated that the property of workload isolation makes
the system much easier to understand and to analyze, so it would be interesting
to compare algorithms that provide this property against other algorithms
(Rate Monotonic, etc.) not only in terms of performance but also of easy
analyze ability.

7 Conclusions

This paper deals with a well known problem that can be resumed using the
following question by Addie et al. [20]: ‘Is there an accurate and useful traffic

model in the form of a simple stochastic process which can be described by a

small number of parameter and, when fed into a single server queue gives the

same performance as a real traffic stream?’.

This paper presents a new model to answer the question. The model is based
in a stochastic process working with histograms (the HBSP model). There is
no need for approximating the traffic source to a Poisson distribution (or any
other distribution) nor solving queueing models. The HBSP model defines an
iterative stochastic process using simple operators working with histograms
(pmf).

This model is shown to be very accurate. Experiments were performed using
synthetic and real-traffic traces. The results show that using a histogram of
about 10 classes is enough to obtain good results, so the HBSP model is very
compact.

Finally. we can affirm that the HBSP model answers in great manner the
question stated by Addie: (a) it is compact: about 10 classes are needed to
obtain accurate results (b) it is easy to implement: is simply to sample and
store the traffic load of network routers in classes (c) it is accurate: the results
obtained are very accurate (d) it is practical: from the buffer load histogram
we can obtain another useful QoS parameters as loss ratio and delay .

A Appendix

This appendix contains a brief description of the buffer analysis as a Discrete
Time Markov Chain and the proofs of the convergence of the HBSP algorithm.

23

First, we proof the convergence using infinite buffer and then, we proof the
convergence with finite buffer.

A.1 Buffer Analysis as a Discrete Time Markov Chain

In this appendix we show that the {Q(n)} stochastic process is a Discrete-
Time Markov Chain (DTMC). Additionally, we can easily obtain the transi-
tion probability matrix P . Using this probability matrix we can obtain the
values for Q(n). The problem of using DTMF it that is not easy to obtain an
analytical solution for the steady state (that is, when n → ∞). Therefore, we
used the iterative method described in this paper to obtain the buffer.

A Discrete-Time Markov Chain is a stochastic process whose probabilities
distributions in state j only depends on the previous state i, and not on how
the process arrived to state i. It is easy to proof that {Q(n)} is a DTMC.
The probability that the buffer in period k takes the value j can be expressed
using the buffer probabilities of period k − 1 as follows:

P [Q(k) = j] =
∑

i

P [Q(k) = i] · P [Q(k) = j|Q(k − 1) = i] (A.1)

The term pij(k − 1, k) = P [Q(k) = j|Q(k − 1) = i] denotes the probability
that the process makes a transition from state i at period k − 1 to state j at
period k. This probability is obtained from the arrival load A and given that
A is the same in all the periods, then the pij(k− 1, k) does not depend on the
period k. Therefore, we can represent pij(k−1, k) as pij and Eq.A.2 is reduced
to:

P [Q(k) = j] =
∑

i

P [Q(k) = i] · pij (A.2)

pij is known as the one-step transition probability. From this we can obtain
the transition probability matrix:

P = [pij] =

p00 p01 p02 · · ·

p10 p11 p12 · · ·
...

...
...

. . .

(A.3)

The components of this matrix are easy to obtain using the definition of the
stochastic process {Q(n)}. That is, for obtaining the i-row of P we apply one
iteration of the stochastic process using an initial load of one unit in j. For
example, the first row is obtained as Φb̂

r̂([1, 0, 0, 0, . . .] � A).

Using the matrix P we can obtain the pmf of Q(k) as:

Q(k) = Q(1)P k (A.4)

24

Nevertheless, determining the asymptotic behavior (that is, the steady state)
poses problems. This implies obtaining the steady-state probability vector v

as:
v = vP vj ≥ 0,

∑

j

vj = 1 (A.5)

As the matrix dimensions depends on the r̂ and b̂ values two cases are studied.
When b is infinite (the no-buffer case), this matrix is infinite. This matrix is
well studied in [30]. It is shown that the matrix presents a certain regularity
in its rows and when the utilization is less than 1 it converges (it is a positive
recurrent chain). In the other hand, when b̂ is finite the matrix has a finite size
of b̂+1× b̂+1 and it more amenable to work with it. Nevertheless, numerically
resolving Eq.A.5 is not easy even for a little matrix. Therefore, we must use
iterative methods as the power method or something similar.

Using the example of subsection refsubsec:alg, A =[0, 0.1, 0.4, 0.2, 0.15, 0.15]
with r̂=3 and b̂=5 we obtain the following matrix:

P =

0.70 0.15 0.15 0.00 0.00 0.00

0.50 0.20 0.15 0.15 0.00 0.00

0.10 0.40 0.20 0.15 0.15 0.00

0.00 0.10 0.40 0.20 0.15 0.15

0.00 0.00 0.10 0.40 0.20 0.30

0.00 0.00 0.00 0.10 0.40 0.50

(A.6)

We can obtain the second iteration state as Q(2) = Q(1)P = [0.580, 0.195,
0.1575, 0.045, 0.0225]. The steady state probability vector is v = [0.3275,
0.1625, 0.1699, 0.1291, 0.1077, 0.1033] that is the same result as using the
HBSP algorithm.

A.2 Buffer Load Sequence with infinite buffer

The sequence {Q(n)} is defined as:

Q(0) = [1]

Q(n) = Φr̂(Q(n − 1) � A)

Proving the convergence directly with histograms can be a very difficult task.
Additionally, we need a clear convergence criteria in order to implement a
direct algorithm. Thus, we convert the previous sequence {Q(n)} to a sequence
of means {E[Q(n)]}. Then, our goal is prove the convergence of this sequence.
We can easily see that if {E[Q(n)]} converges then {Q(n)} converges.

25

Theorem 1 If {E[Q(n)]} converges then {Q(n)} converges.

PROOF. {Q(n)} is a sequence of histograms {[q0, q1 · · · qm]} qi ≥ 0. If
{Q(n)} converges then limn→∞ qi = ci 0 ≤ i ≤ m. Then, if {E[Q(n)]}
converges we have:

lim
n→∞

E[Q(n)] = lim
n→∞

m∑

i=0

qin · i =
m∑

i=0

lim
n→∞

qin · i = C (A.7)

By definition qi ≥ 0, so if some element qi does not converge then limn→∞ qin =
∞. That is a contradiction with Eq.A.7. Therefore, we have an histogram limit
[c0, c1 · · · cm]:

lim
n→∞

qin = ci

m∑

i=0

ci · i = C

2

We calculated the first 30 elements of the sequence using the load of sec-
tion 3.2. This arrival load has a mean of 2.85. Additionally, we calculated
E[I(k)] and the difference E[I(k)] − E[Q(k)]. The results are in table A.1.
The table shows that the sequence converges. Furthermore, the sequence
E[I(k)] − E[Q(k)] converges to E[A]. That is:

lim
n→∞

(E[I(n)] − E[Q(n)]) = E[A] < r̂ (A.8)

This means that the traffic that is sent to network in each iteration is E[A].
This is logical, because if we send less traffic than E[A] this traffic is accumu-
lated in E[I] and the algorithm does not converge.

[Table 1 about here.]

The main difficult of proving the convergence of the sequence is the bound

operator Φa(P). We can obtain an expression for Φa()

Theorem 2 E[Φa(P)] = E[P] − a +
∑a−1

i=0 pi · (a − i).

PROOF. By definition, we have that E[P] =
∑n

i=0 pi · i. If we apply the Φa()
operator to P we have:

E[Φa(P)] =
n−a∑

i=0

pi+a · i =
n∑

i=a

pi · (i − a) =
n∑

i=a

pi · i −
n∑

i=a

pi · a

If we add and subtract the following term
∑a−1

i=0 pi · i and regroup terms, we
have:

26

=
n∑

i=a

pi · i +
a−1∑

i=0

pi · i

︸ ︷︷ ︸

E[P]

−
a−1∑

i=0

pi · i −
n∑

i=a

pi · a = E[P] −
a−1∑

i=0

pi · i −
n∑

i=a

pi · a

Now if we add and subtract the following term
∑a−1

i=0 pi ·a to the final term we
have:

E[P] −
a−1∑

i=0

pi · i − (
n∑

i=a

pi · a +
a−1∑

i=0

pi · a

︸ ︷︷ ︸
∑

n

i=0
pi=1

−
a−1∑

i=0

pi · a) =

E[P] −
a−1∑

i=0

pi · i − a +
a−1∑

i=0

pi · a = E[P] − a +
a−1∑

i=0

pi · (a − i)

2

Corolian 1 E[Φa(P)] = E[P] − a if
∑a−1

i=0 pi = 0.

PROOF. Applying the previous theorem we can see that the term
∑a−1

i=0 pi ·
(a − i) is zero. Therefore E[Φa(P)] = E[P] − a. 2

Now, we proof the convergence of E[Q].

Theorem 3 The sequence E[Q(n)] converges if E[A] ≤ r̂ and M [A] > r̂

PROOF. Proving directly that E[Q(n)] is increasing has the problem that
the Φa() operator is not linear. Therefore, instead of proving the convergence
of E[Q(n)] we will prove that E[Q(n) � D] converges. The histogram D is
selected as pi = 0 ∀i < r̂ and pr̂ = 1. The convolution of P with D has the
effect of shifting r̂ positions to the right the histogram P .

It is easy to see that if we prove that E[Q(n) � D] converges, then E[Q(n)]
converges:

E[Q(n) � D] = E[Q(n)] + E[D] = E[Q(n)] + r̂

E[Q(n) � D] − r̂ = E[Q(n)]

Therefore, as E[Q(n)] = E[Q(n) � D] − r̂ and r̂ is constant, if E[Q(n) � D]
converges then E[Q(n)] converges.

27

To prove the convergence of a sequence we need to prove that is increasing
and bounded.

FIRST: E[Q(n) � D] is increasing when M [A] > r̂. We proof by induction.

For n = 1, we have to prove that E[Q(0) �D] < E[Q(1) �D]. Then we have:

E[Q(0) � D] < E[Q(1) � D]

E[Q(0)] + E[D] < E[Q(1)] + E[D]

E[Q(0)] + r̂ < E[Q(1)] + r̂

E[Q(0)] < E[Q(1)]

So, we have to prove that E[Q(1)] > E[Q(0)]. As E[Q(0)] = 0, then E[Q(1)]
must be greater than 0. Therefore:

E[Q(1)] = E[Φr̂(Q(0) + A)] = E[Φr̂(0 + A)]

It is easy to see that the last term is greater than zero only if M [A] > r̂

For n = k, given that E[Q(k) � D] < E[Q(k + 1) � D] we have to prove that
E[Q(k + 1) �D] < E[Q(k + 2) �D] . Then, if we add E[A]− r̂ in both sides
we have:

E[Q(k) � D] + E[A] − r̂ < E[Q(k + 1) � D] + E[A] − r̂

E[Q(k) � D � A] − r̂ < E[Q(k + 1) � D � A] − r̂

E[(Q(k) � A) � D] − r̂ < E[(Q(k + 1) � A) � D] − r̂

The effect of the convolution of D with the left term is shift to the right r̂
positions. Therefore, we have E[Φr̂(P � D)] is E[P � D] − r̂.

E[Φr̂(Q(k) � A � D)] < E[Φr̂(Q(k + 1) � A � D)]

We can see that E[Φr̂(Q(k) � A � D)] is E[Q(k + 1) � D] and E[Φr̂(Q(k +
1) � A � D)] is E[Q(k + 2) � D]. So E[Q(k + 1) � D] < E[Q(k + 2) � D].

SECOND: E[Q(n) � D] is bounded when E[A] ≤ r̂.

First, we choose C as [0, · · · , pr̂, · · · pn] so E[C] ≥ r̂. Applying the previous
corolian we can see that Φr̂(C) = E[C] − r̂.

Now we proof that E[Q(n) � D] is bounded by E[C]. We proof by induction.

For n = 1, we have:

E[Q(1) � D] = E[Φr̂(A � D)] = E[A � D] − r̂ = E[A] + E[D] − r̂ = E[A]

So, if E[A] ≤ r̂ then E[A] ≤ E[C].

28

For n = k we have that E[Q(k)�D] < E[C]. If we add in both sides E[A]− r̂
we have:

E[Q(k) � D] + E[A] − r̂ < E[C] + E[A] − r̂

E[Q(k) � D � A] − r̂ < E[C � A] − r̂

As P = Q(k)�D�A has
∑r̂−1

i=0 pi = 0 then we can replace E[Q(k)�D�A]− r̂
by E[Φr̂(Q(k) � D � A)].

E[Φr̂(Q(k) � D � A)] < E[C � A] − r̂

As E[Φr̂(Q(k) � D � A)] is E[Q(k + 1) � D] and E[A] ≤ r̂ then:

E[Q(k + 1) � D] < E[C] + E[A] − r̂ < E[C] + r̂ − r̂ = E[C]

2

A.3 Buffer Load Sequence with finite buffer

In this appendix we proof the convergence of the following sequence.

Q(0) = [1]

Q(n) = Φb̂
r̂(Q(n − 1) � A)

As in the previous demonstration we will proof the convergence of {E[Q(n)]}.
We proof that is increasing and bounded.

Theorem 4 The sequence E[Q(n)] converges if M [A] > r̂

PROOF.

FIRST: E[Q(n)] is increasing when M [A] > r̂.

We want to proof that in each iteration E[Q(i)] is increasing. We distinguish
two cases:

(1) While M [Q(i)] < b̂. This is the same as b̂ = ∞ so it is increasing.
(2) If M [Q(i)] ≥ b̂. In this case all the probabilities that are greater than b̂

are acummulated in pb, so it is easy to see that is increasing.

SECOND: {E[Q(n)]} is bounded by b̂.

This is easy to proof because the operator Φb̂
r̂() always cut probabilities upper

than b̂ so {E[Q(n)]} is always bounded by b̂.

2

29

References

[1] C. M. Aras, J. F. Kurose, D. S. Reeves, H. Schulzrinne, Real-time
communication in packet-switched networks, Proceedings of the IEEE 82 (41)
(1994) 122–139.

[2] R. Braden, L. Zhang, S. Berson, S.Herzog, S. Jamin, Resource reservation
protocol (rsvp). versin 1 functional specification, RFC 2205.

[3] A.K.Parekh, R.G.Gallager, A generalized processor sharing approach to flow
control in integrated services networks: The single node case, IEEE/ACM
Transactions on Networking 1 (3) (1993) 344–357.

[4] A.K.Parekh, R.G.Gallager, A generalized processor sharing approach to flow
control in integrated services networks: multiple node case, IEEE/ACM
Transactions on Networking 2 (2) (1994) 137–150.

[5] R. L. Cruz, A calculus for network delay, part i : Network elements in isolation,
IEEE/ACM Transactions on Information Theory 37 (1) (1991) 114–131.

[6] R. L. Cruz, A calculus for network delay, part ii : Network analysis, IEEE/ACM
Transactions on Information Theory 37 (1) (1991) 132–141.

[7] L. Georgiadis, R. Guerin, V. Peris, K. Sivarajan, Efficient network qos
provisioning based on per node traffic shaping, IEEE/ACM Transactions on
Networking 4 (4) (1996) 482–501.

[8] J.-Y. L. Boudec, P. Thiran, Network Calculus, Vol. 2050 of Lecture Notes in
Computer Science, Springer Verlag, 2002.

[9] E. Wrege, E. W. Knightly, H. Zhang, J. Liebeherr, Deterministic delay bounds
for vbr video in packet-switching networks : Fundamental limits and practical
tradeoffs, IEEE/ACM Transactions on Information Theory 4 (3) (1996) 352–
362.

[10] J. Schmitt, M. Karsten, L. Wolf, R. Steinmetz., Aggregation of guaranteed
service flows., in: IWQoS: International Workshop on Quality of Service, 1999.

[11] H. Fu, E. W. Knightly, Aggregation and scalable qos: A performance study, in:
IWQoS: International Workshop on Quality of Service, 2001.

[12] E. Knightly, P. Rossaro, On the effects of smoothing for deterministic qos,
Distributed Systems Engineering Journal 4 (1) (1997) 3–15.

[13] J. Salehi, Z. Zhang, J. Kurose, D. Towsley, Supporting stored video :
Reducing rate variability and end-to-end resource requirements through optimal
smoothing, IEEE/ACM Transactions on Networking 6 (4) (1998) 397–410.

[14] S. Floyd, V. Jacobson, Random early detection gateways for congestion
avoidance, IEEE/ACM Transactions on Networking 1 (4) (1993) 397–412.

[15] D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, An architecture for
differentiated services, RFC 2475.

30

[16] E. W. Knightly, N. Shroff, Real-time transport of mpeg video with a statistically
guaranteed loss ratio in atm networks, IEEE Network (1999) 20–29.

[17] D. Ferrari, D. Verma, A scheme for real-time channel establishment in wide-
area networks, IEEE Journal of Selected Areas Communication 8 (2) (1990)
368–379.

[18] H. Zhang, E. W. Knightly, Rcsp and stop-and-go: A comparison of two
non-work-conserving disciplines for supporting multimedia communication,
ACM/Springer-Verlag Multimedia Systems Journal 4 (6).

[19] Z. L. Zhang, D. Towsley, J. Kurose, Statistical analysis of the generalized
processor sharing scheduling discipline, IEEE Journal of Selected Areas
Communication 14 (6) (1995) 1071–1080.

[20] R. G. Addie, M. Zukerman, T. D. Neame, Broadband traffic modeling: Simple
solutions to hard problems, IEEE Communications Magazine (1998) 88–95.

[21] S. Schenker, C.Partridge, R.Guerinm, Specification of guaranteed quality of
service, RFC 2212.

[22] E.W.Knightly, H. Zhang, Traffic characterization and switch utilization using
a deterministic bounding interval dependent traffic model, in: IEEE Infocom,
1995.

[23] E. Hernández-Orallo, J. Vila-Carbó, A new approach to optimise bandwidth
reservation for real-time video transmission with deterministic guarantees, Real-
Time Imaging 9 (1) (2003) 11–26.

[24] W.E.Leland, M.S.Taqqu, W.Willinger, D.V.Wilson, On the self-similar nature
of ethernet traffic (extended version), IEEE/ACM Transactions on Networking
2 (1) (1994) 1–15.

[25] B. Tsybakov, N. Georganas, On self-similar traffic in atm queues:
definitions, overflow probability bound, and cell delay distribution, IEEE/ACM
Transactions on Networking 5 (3) (1997) 397–409.

[26] M. Zukerman, T. D. Neame, R. G. Addie, Internet traffic modeling and future
technology implications, in: IEEE Infocom, 2003.

[27] P. Skelly, M. Schwartz, S. Dixit, A histogram-based model for video traffic
behavior in an atm multiplexer, IEEE/ACM Transactions on Networking 1 (4)
(1993) 446–459.

[28] N. B. Shroff, M. Schwartz, Video modeling withing networks using deterministic
smoothing at the source, in: IEEE Infocom, 1994, pp. 342–349.

[29] S.-K. Kweon, K. G. Shin, Real-time transport of mpeg video with a statistically
guaranteed loss ratio in atm networks, IEEE Transactions In Parallel and
Distributed Computing 12 (4) (2001) 387–403.

[30] J. Dı̀az, Tecnicas estocasticas para el calculo del tiempo de respuesta en sistemas
de tiempo real, Phd thesis, Universidad de Oviedo, Spain (2003).

31

[31] J. Vila, E. Hernandez, Histogram based analysis of real-time systems and
networks, Tech. Rep. UPV-DISCA-06-01, Dept. Informatica de Sistemas y
Computadores. Universidad Politecnica de Valencia, Valencia, Spain (January
2006).

[32] L. Kleinrock, Queueing Systems. Volume 2: Computer Applications, Wiley-
Interscience, New York, 1976.

[33] K. Cho, et al, Traffic data repository at the wide project, in: USENIX 2000
FREENIX Track, 2000.

[34] N. B. Shroff, M. Schwartz, Improved loss calculations at an atm multiplexer,
IEEE/ACM Transactions on Networking 6 (4) (1998) 411–21.

[35] M. Krunz, R. Sass, H. Huhhes, Statistical characteristics and multiplexing of
mpeg streams, in: IEEE Infocom, 1995, pp. 452–462.

[36] D. Awduche, et al, Overview and principles of internet traffic engineering, RFC
3272.

[37] E. Hernández-Orallo, J. Vila-Carbó, S. Saez-Barona, S. Terrasa-Barrena,
Provisioning expedited forwarding diffserv channels using multimedia
aggregates, in: Euromicro 2004, 2004.

[38] J. Diaz, D. Garcia, K. Kim, C. Lee, L. L. Bello, J. López, S. L.Min, O.Mirabella,
Stochastic analysis of periodic real-time systems, in: Proc. of the 23rd IEEE
Real-Time Systems Symposium,, 2002, pp. 289–300.

32

List of Figures

33

Class Interval Midpoint Probability Cumulative

number Ẋ X probability

i [x−

i
, x+

i
[xi pX(i) p+

X
(i)

0 [0, 20[10 0 0

1 [20, 40[30 0.1 0.1

2 [40, 60[50 0.4 0.5

3 [60, 80[70 0.2 0.7

4 [90, 100[90 0.15 0.85

5 [100, 120[110 0.15 1.0

(a) Grouped probability distribution

1 2 3 4 50

0.2

0.4

0.6

0.8

1.0

time

Sampling
period

Interval

number

Prob.

(b) Histogram

Fig. A.1. This figure shows the sampling of a traffic workload. The traffic load range
is [0, 120[kb.

34

.

.

.

A0
Q0

Q1

Qm

A1

Am

S0

S1

Sm
Processor

(a) General scenario

A
Q

Processor

R

(b) Scenario with strong workload iso-
lation

Fig. A.2. Scenarios of the buffer length problem

35

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(a) Iteration 2

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(b) Iteration 10

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(c) Iteration 20

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(d) Iteration 30

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(e) Iteration 45

Fig. A.3. Stochastic process with E[A] = 2.85, r̂ = 3 and infinite buffer

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(a) Iteration 2

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(b) Iteration 10

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(c) Iteration 20

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(d) Iteration 30

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(e) Iteration 45

Fig. A.4. Stochastic process with E[A] = 2.85, r̂ = 2 and infinite buffer

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(a) Iteration 2

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(b) Iteration 10

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(c) Iteration 20

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(d) Iteration 30

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

(e) Iteration 45

Fig. A.5. Stochastic process with E[A] = 2.85, r̂ = 2 and a finite buffer of 30 bits

36

Algorithm HBSP(A,r̂,b̂)

A: arrival rate

r̂: service rate class

b̂: buffer length class

1 Q(0) = [1]

2 k = 0

3 do

4 k = k + 1

5 I(k) = Q(k − 1) � A

6 Q(k) = Φb̂
r̂(I(k))

7 while E[Q(k)] − E[Q(k − 1)] > ε

8 return Q(k)

Fig. A.6. HBSP algorithm

37

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) A

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) I(2)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Stationary I

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Q(1)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Q(2)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Stationary Q

Fig. A.7. Evolution of the buffer histogram with the HBSP algorithm.

38

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

traffic load in period (cells)

(a) Load histogram (A)

0 100 200 300 400 500
1

2

3

4

5

6

7

frame number

(b) Synthetic traffic (first 500 samples)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Histogram
Simulation

(c) Infinite buffer experiment

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Histogram
Simulation

(d) Finite buffer experiment

Fig. A.8. Histogram Experiments with an interval size of 1 unit

39

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

traffic load in period (bits)

(a) Load histogram (A)

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

50

frame number

(b) Synthetic traffic (first 500 samples)

0 10 20 30 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

bits in buffer

Simulation
Histogram
Histogram x 5

(c) Infinite buffer experiment results

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

bits in buffer

Simulation
Histogram
Histogram x 5

(d) Finite buffer experiment results

Fig. A.9. Histogram Experiments with an interval size of 5

40

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
0

50KB

100KB

150KB

200KB

250KB

300KB

350KB

400KB

frame number

(a) MAWI traffic trace

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

load in period (bits)

(b) MAWI arrival load histogram

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

bits in buffer

Histogram 10 classes

Histogram 100 classes

Histogram 10 classes x 10

Simulation

0 2 4 6 8 10

x 10
4

10
-3

10
-2

10
-1

10
0

bits in buffer

(c) Infinite buffer experiment

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

10
−3

10
−2

10
−1

10
0

bits in buffer

Histogram 10 classes
Histogram 100 classes
Histogram 10 classes x 10
Packet Simulation

(d) Finite buffer experiment

Fig. A.10. Experiment results using MAWI Traffic traces.

41

0 2 4 6 8 10

x 10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

buffer

Histogram R=8e6
Simulation R=8e6
Histogram R=8.5e6
Simulation R=8.5e6
Histogram R=9e6
Simulation R=9e6

(a) Loss Ratio Curve

0 0.5 1 1.5 2

x 10
5

10
−3

10
−2

10
−1

10
0

bits in buffer

Histogram 10 classes
Histogram 100 classes
Histogram 10 classes x 10
Simulation

(b) 24-hour finite buffer experiment

Fig. A.11. Loss Curve Precision and Long-term buffer experiment.

42

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

period

Histogram Difference

(a) R = 9Mb/s Infinite buffer

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

period

Histogram difference
CLR error

(b) R = 7Mb/s b = 0.2Mb

Fig. A.12. Sample Period and precision.

43

0 20 40 60 80 100
10

−2

10
−1

10
0

classes

x1
x5
x10
x20

(a) R = 9Mb/s Infinite buffer

0 20 40 60 80 100
10

−1

10
0

classes

x1
x5
x10
x20

(b) R = 7Mb/s b = 0.2Mb

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

classes

x1
x5
x10
x20
Simulation

(c) CLR R = 7Mb/s b = 0.2Mb

Fig. A.13. Classes and precision.

44

0 0.5 1 1.5 2

x 10
5

10
−15

10
−10

10
−5

10
0

bits in buffer

Histogram Stochastic Process
Packet Simulation
Histogram M/D/1/K method

(a) MD1K results r = 700000bps b = 200000bps

0 0.5 1 1.5 2

x 10
5

0

0.02

0.04

0.06

0.08

0.1

buffer

simulation
histogram
10 samples
100 samples
1000 samples
10000 samples

(b) CLR r = 800000bps b = 400000bps

Fig. A.14. Comparison with other methods.

45

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Workload A0

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Workload A1

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Interference of A1 on A0

Fig. A.15. Example of the interferences method

46

List of Tables

47

Table A.1
Sequence values

k Ik Bk Ik − Bk k Ik Bk Ik − Bk

1 2.85 0.45 2.4 16 4.6136 1.7774 2.8362

2 3.3 0.735 2.565 17 4.6274 1.7886 2.8387

3 3.585 0.9491 2.6358 18 4.6386 1.7977 2.8408

4 3.7991 1.1187 2.6804 19 4.6477 1.8051 2.8425

5 3.9687 1.2542 2.7144 20 4.6551 1.8112 2.8439

6 4.1042 1.3636 2.7406 21 4.6612 1.8161 2.8450

7 4.2136 1.4522 2.7613 22 4.6661 1.8201 2.8460

8 4.3022 1.5242 2.7780 23 4.6701 1.8233 2.8467

9 4.3742 1.5826 2.7915 24 4.6733 1.8260 2.8473

10 4.4326 1.6302 2.8024 25 4.6760 1.8281 2.8478

11 4.4802 1.6689 2.8113 26 4.6781 1.8298 2.8482

12 4.5189 1.7003 2.8185 27 4.6798 1.8313 2.8485

13 4.5503 1.7259 2.8244 28 4.6813 1.8324 2.8488

14 4.5759 1.7467 2.8291 29 4.6824 1.8334 2.8490

15 4.5967 1.7636 2.8330 30 4.6834 1.8341 2.8492

48

