STM32F439xx HAL User Manual
stm32f4xx_hal_qspi.c File Reference

QSPI HAL module driver. This file provides firmware functions to manage the following functionalities of the QuadSPI interface (QSPI). + Initialization and de-initialization functions + Indirect functional mode management + Memory-mapped functional mode management + Auto-polling functional mode management + Interrupts and flags management + DMA channel configuration for indirect functional mode + Errors management and abort functionality. More...

#include "stm32f4xx_hal.h"

Go to the source code of this file.


Detailed Description

QSPI HAL module driver. This file provides firmware functions to manage the following functionalities of the QuadSPI interface (QSPI). + Initialization and de-initialization functions + Indirect functional mode management + Memory-mapped functional mode management + Auto-polling functional mode management + Interrupts and flags management + DMA channel configuration for indirect functional mode + Errors management and abort functionality.

Author:
MCD Application Team
 ===============================================================================
                        ##### How to use this driver #####
 ===============================================================================
  [..]
    *** Initialization ***
    ======================
    [..]
      (#) As prerequisite, fill in the HAL_QSPI_MspInit() :
        (++) Enable QuadSPI clock interface with __HAL_RCC_QSPI_CLK_ENABLE().
        (++) Reset QuadSPI IP with __HAL_RCC_QSPI_FORCE_RESET() and __HAL_RCC_QSPI_RELEASE_RESET().
        (++) Enable the clocks for the QuadSPI GPIOS with __HAL_RCC_GPIOx_CLK_ENABLE().
        (++) Configure these QuadSPI pins in alternate mode using HAL_GPIO_Init().
        (++) If interrupt mode is used, enable and configure QuadSPI global
            interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
        (++) If DMA mode is used, enable the clocks for the QuadSPI DMA channel 
            with __HAL_RCC_DMAx_CLK_ENABLE(), configure DMA with HAL_DMA_Init(), 
            link it with QuadSPI handle using __HAL_LINKDMA(), enable and configure 
            DMA channel global interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
      (#) Configure the flash size, the clock prescaler, the fifo threshold, the
          clock mode, the sample shifting and the CS high time using the HAL_QSPI_Init() function.

    *** Indirect functional mode ***
    ================================
    [..]
      (#) Configure the command sequence using the HAL_QSPI_Command() or HAL_QSPI_Command_IT() 
          functions :
         (++) Instruction phase : the mode used and if present the instruction opcode.
         (++) Address phase : the mode used and if present the size and the address value.
         (++) Alternate-bytes phase : the mode used and if present the size and the alternate 
             bytes values.
         (++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase).
         (++) Data phase : the mode used and if present the number of bytes.
         (++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay 
             if activated.
         (++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode.
      (#) If no data is required for the command, it is sent directly to the memory :
         (++) In polling mode, the output of the function is done when the transfer is complete.
         (++) In interrupt mode, HAL_QSPI_CmdCpltCallback() will be called when the transfer is complete.
      (#) For the indirect write mode, use HAL_QSPI_Transmit(), HAL_QSPI_Transmit_DMA() or 
          HAL_QSPI_Transmit_IT() after the command configuration :
         (++) In polling mode, the output of the function is done when the transfer is complete.
         (++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold 
             is reached and HAL_QSPI_TxCpltCallback() will be called when the transfer is complete.
         (++) In DMA mode, HAL_QSPI_TxHalfCpltCallback() will be called at the half transfer and 
             HAL_QSPI_TxCpltCallback() will be called when the transfer is complete.
      (#) For the indirect read mode, use HAL_QSPI_Receive(), HAL_QSPI_Receive_DMA() or 
          HAL_QSPI_Receive_IT() after the command configuration :
         (++) In polling mode, the output of the function is done when the transfer is complete.
         (++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold 
             is reached and HAL_QSPI_RxCpltCallback() will be called when the transfer is complete.
         (++) In DMA mode, HAL_QSPI_RxHalfCpltCallback() will be called at the half transfer and 
             HAL_QSPI_RxCpltCallback() will be called when the transfer is complete.

    *** Auto-polling functional mode ***
    ====================================
    [..]
      (#) Configure the command sequence and the auto-polling functional mode using the 
          HAL_QSPI_AutoPolling() or HAL_QSPI_AutoPolling_IT() functions :
         (++) Instruction phase : the mode used and if present the instruction opcode.
         (++) Address phase : the mode used and if present the size and the address value.
         (++) Alternate-bytes phase : the mode used and if present the size and the alternate 
             bytes values.
         (++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase).
         (++) Data phase : the mode used.
         (++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay 
             if activated.
         (++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode.
         (++) The size of the status bytes, the match value, the mask used, the match mode (OR/AND),
             the polling interval and the automatic stop activation.
      (#) After the configuration :
         (++) In polling mode, the output of the function is done when the status match is reached. The
             automatic stop is activated to avoid an infinite loop.
         (++) In interrupt mode, HAL_QSPI_StatusMatchCallback() will be called each time the status match is reached.

    *** Memory-mapped functional mode ***
    =====================================
    [..]
      (#) Configure the command sequence and the memory-mapped functional mode using the 
          HAL_QSPI_MemoryMapped() functions :
         (++) Instruction phase : the mode used and if present the instruction opcode.
         (++) Address phase : the mode used and the size.
         (++) Alternate-bytes phase : the mode used and if present the size and the alternate 
             bytes values.
         (++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase).
         (++) Data phase : the mode used.
         (++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay 
             if activated.
         (++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode.
         (++) The timeout activation and the timeout period.
      (#) After the configuration, the QuadSPI will be used as soon as an access on the AHB is done on 
          the address range. HAL_QSPI_TimeOutCallback() will be called when the timeout expires.

    *** Errors management and abort functionality ***
    ==================================================
    [..]
      (#) HAL_QSPI_GetError() function gives the error raised during the last operation.
      (#) HAL_QSPI_Abort() and HAL_QSPI_AbortIT() functions aborts any on-going operation and 
          flushes the fifo :
         (++) In polling mode, the output of the function is done when the transfer 
              complete bit is set and the busy bit cleared.
         (++) In interrupt mode, HAL_QSPI_AbortCpltCallback() will be called when 
              the transfer complete bi is set.

    *** Control functions ***
    =========================
    [..]
      (#) HAL_QSPI_GetState() function gives the current state of the HAL QuadSPI driver.
      (#) HAL_QSPI_SetTimeout() function configures the timeout value used in the driver.
      (#) HAL_QSPI_SetFifoThreshold() function configures the threshold on the Fifo of the QSPI IP.
      (#) HAL_QSPI_GetFifoThreshold() function gives the current of the Fifo's threshold 

    *** Workarounds linked to Silicon Limitation ***
    ====================================================
    [..]
      (#) Workarounds Implemented inside HAL Driver
         (++) Extra data written in the FIFO at the end of a read transfer

  
Attention:

© COPYRIGHT(c) 2017 STMicroelectronics

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of STMicroelectronics nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Definition in file stm32f4xx_hal_qspi.c.