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Abstract: Static use of locking caches is a useful solution to take advantage of
cache memories in real-time systems. Locking cache operates preloading and
locking a set of instructions, thus cache contents are a-priori known and remain
unchanged during system operation. This solution eliminates the unpredictable
behavior of conventional caches, making easy to accomplish the schedulability
test through simple and well-known tools. Once attained predictability, in this
paper we analyze the performance of this schema compared to conventional
cache, as function of system size and cache size. We also study the influence of
the scheduler (either fixed or dynamic priority). Copyright © 2003 IFAC

Keywords: real-time systems, cache memories, scheduling algorithms,
performance analysis, genetic algorithms.

1.   INTRODUCTION

Microprocessors include cache memories in their
memory hierarchy to increase system performance.
General-purpose systems benefit directly from this
architectural improvement, but hard real-time
systems need additional hardware resources and/or
system analysis to guarantee the time correctness of
the system behavior when cache memories are
present. In multitask, preemptive real-time systems,
the use of cache memories presents two problems.
The first problem is to calculate the Worst Case
Execution Time (WCET) due to intra-task or intrinsic
interference. Intra-task interference occurs when a
task removes its own instructions from the cache due
to conflict and capacity misses. This way, execution
time of instructions is not constant. The second
problem is to calculate the task response time due to
inter-task or extrinsic interference. Inter-task
interference occurs in preemptive multitasking

systems when a task displaces the working set of any
other task from the cache. When the preempted task
resumes execution, a burst of cache misses increases
its execution time. This effect, called cache-refill
penalty or cache-related preemption delay must be
considered in the schedulability analysis, since it
situates task execution time over the precalculated
WCET.

Several solutions have been proposed for the use of
cache memories in real-time systems. In (Healy, et
al., 1999; Lim, et al., 1994; Li, et al., 1996) cache
behavior is analyzed to estimate task execution time
considering the intra-task interference. In (Lee, et al.,
1996; Busquets, et al., 1996) cache behavior is
analyzed to estimate task response time considering
the inter-task interference, using a precalculated
cached WCET. Alternative architectures to
conventional cache memories have been proposed, in
order to eliminate or reduce cache unpredictability,
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making easy the sechedulability analysis. In (Kirk,
1989; Liedtke, et al., 1997; Wolfe, 1993) hardware
and software techniques are used to divide the cache
memory into partitions, dedicating one or more
partitions to each task, avoiding the inter-task
interference.

The main drawback of these solutions is the
complexity of the algorithms and necessary methods
in order to accomplish the schedulability analysis or
partitioning the cache. Also, each method considers
only one face of the problem, intra-task interference
or inter-task interference, but not together.

The use of locking caches has been proposed in
(Martí, et al., 2001b; Martí, et al., 2003) as an
alternative to conventional caches solving both intra-
task and inter-task interference problem. The static
use of locking caches fully eliminates the intra-task
interference, allowing the use of simple algorithms in
order to estimate the WCET of tasks. Regarding the
inter-task interference, the static use of locking
caches reduces the cache-refill penalty to a very low,
constant time for all preemptions suffered by any
task, so inter-task interference can be incorporated to
schedulability analysis in a simple way.

This work presents a statistical analysis of worst-case
performance offered by the static use of locking
caches versus actual worst-case performance offered
by conventional, dynamic and non-deterministic
caches (hereinafter, we will abbreviate "worst-case
performance" by "performance"). This analysis is
presented for fixed-priority scheduler and Earliest
Deadline First (EDF) scheduler. The behavior of the
performance of locking cache under both schedulers
is compared

2. OVERVIEW OF THE STATIC USE OF
LOCKING CACHES.

The locking cache is a direct mapped cache with no
replacement of contents when locked, joined with a
temporal buffer of one-line size. The temporal buffer
reduces access time to the memory blocks that are
not loaded in the cache, since only references to the
first instruction in the block produce cache miss.
During system start-up, a small routine is executed to
preload and lock the cache. Preloaded instructions
can belong to any task of the system, and may be
large consecutive instruction sequences or small,
individual separate blocks. When the system begins
its full-operational execution, the instruction cache is
loaded with a well-known set of instructions, and its
contents will never change, eliminating both intra-
task and inter-task interference.

In locking caches, an instruction will always or never
be in the cache. In this way and memory related, the
execution time of the instruction is always constant
and a-priori known. Thus, the WCET of a task

running on a locking cache can be estimated using
the worst-path analysis (Shaw, 1989) applied to
machine code, taking into account the state, locked or
not, of each instruction.

For fixed-priority schedulers when locking cache is
used, the schedulability analysis is accomplished
using CRTA (Busquets, et al., 1996). Equation 1
shows the expression of CRTA, where cache-refill
penalty is added for each preemption a task suffers.
For EDF scheduler when locking cache is used,
schedulability analysis is accomplised using the
Initial Critical Instant (ICI) test (Ripoll, et al., 1996).
In EDF is not easy to know the number of
preemptions a task suffers, but it is known the
maximum number of preemptions a task produces. A
task produces a preemption in its arrival or never will
produce it. So, cache-refill penalty can be added to
preempting task instead to preempted task. Equations
2 and 3 show how to include cache-refill penalty in
the ICI test.

In equations 1 to 3, Ci is the WCET of τi without
preemptions but considering locking-cache effects,
and γ is the value of cache-refill penalty. In static use
of locking cache, inter-task interference doesn’t exist
except for a small extrinsic interference introduced
by the temporal buffer. After a preemption, a task
must reload, in the worst case, only this temporal
buffer. This way, the value of γ is Tmiss, for all
preemptions, all tasks, where Tmiss is the time to
transfer a block from main memory to temporal
buffer.

Instructions to be loaded and locked in cache are
selected by a genetic algorithm executed during
system design. The developed algorithm provides the
set of main memory blocks, and the result of the
schedulability test. Also, this algorithm provides
system utilization. Further details can be found in
(Martí, et al., 2001a).
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3. EXPERIMENTS

Experiments developed are composed of a set of
tasks and a cache with definite size. The tasks used in
the experiments are synthetic created in order to
stress the locking cache and exercise the genetic
algorithm. The main parameters of the experiments



are described in Table 1. More than 360 experiments
have been defined. Four (two for each scheduler)
kinds of runs have been accomplished for each
experiment:

• Executing the genetic algorithm for each
experiment.

• Simulating the conventional caches, using direct-
mapped, two-way, four-way and full associative
cache with LRU replacement algorithm. The
best map-function is selected as performance
value for each experiment. Simulations are
accomplished using the SPIM tool (Patterson
and Hennessy,1994), a MIPS R2000 simulator.

4. PERFORMANCE ANALYSIS

Regarding performance, it is not easy to compare the
performance of a real-time system running over
different hardware. If the same tasks-set is
schedulable in both architectures, there are many
characteristics and metrics useful to compare
performance. The approach proposed in this work to
compare the performance obtained from both locking
cache and conventional cache is the processor
utilization. Utilization of conventional cache come
from the simulation of the hyperperiod (Ucs for fixed-

priority scheduled experiments and Uce for EDF
scheduled experiments). This would be an upper
bound of the performance obtained by any analysis
tool. Utilization of locking cache is obtained by the
execution of the genetic algorithm (Uls for fixed-
priority scheduled experiments and Ule for EDF
scheduled experiments).

To compare the behaviors of the locking and
conventional caches, Performance (πs and πe) is
defined as the utilization of the conventional cache
divided by the utilization of the locking cache (πs=
Ucs/Uls and πe= Uce/Ule). π values greater than 1
indicate that locking caches provide a lower
utilization than conventional caches, thus providing
better performance.

Fig. 1 presents the accumulated frequency of πs and
πe. Y-axis value is the percentage of experiments
with a π value higher than x-axis value. Table 2
shows a statistical summary of πs and πe. Both figure
and table show that in a great number of experiments,
locking caches provide the same or better
performance than conventional caches, reaching
about 60% of experiments with no loss or very slight
loss of performance. Besides, locking cache seems to
behave the same way for both static and dynamic
schedulers. Further analysis corroborates this
hypothesis.

Intuitively, the most important factor in the behavior
of π is the relationship between the cache size and
the size of experiment code, since all tasks in the
system compete for preloading their instructions in
the cache. System Size Ratio (SSR) is defined as
cache size divided by the sum of all system tasks size
(equation 4).

SizeCode
SizeCache

SSR
_
_

=
(4)

Fig. 2 shows the scatterplot of πs versus SSR. Each
point is the performance (πs=Ucs/Uls) of each
experiment. The x-axis is shown in logarithmic scale.
In the same way, Fig. 3 shows the scatterplot of πe

versus SSR. Again, the behavior of locking cache

Table 1 Main characteristics of experiments

Item Minimum Maximum
Number of tasks 3 8
Size of task 2 KB 32 Kb
System size (sum of
tasks’ size)

8 Kb 60 Kb

Instructions executed by
task

50,000 8,000,000

Instructions executed by
system

200,000 10,000,000

Cache size 1Kb 64Kb
Cache line size 16 bytes 16 bytes
Execution time from
cache or temporal
buffer (Thit)

1 cycle 1 cycle

Time to transfer from
main memory  (Tmiss)

10 cycles 10 cycles
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Fig. 1. Frequency histogram for πs and πe.

Table 2 Statistical summary for Performance

Statistic Fixed sched. EDF sched.
Average 0.90275396 0,900469293
Median 1.01112334 1,000110695
Minim 0.35296379 0,358470076
Maxim 1.35798524 1,357281619
Std. deviation 0.23985561 0,232068
Low quartile 0.715842316 0,71499322
High quartile 1.058288365 1,046493603
# of experiments 182 182
Exps with π > 1 101 (55.49%) 93 (51.1%)
Exps. with π > 0.9 140 (62.64%) 115 (63,19%)



under both schedulers seems to be the same, and a
very strong interaction may be noticed between
performance of locking cache and the System Size
Ratio.

In order to study this interaction, Fig. 4 and Fig. 5
presents the performance grouped by SSR values.
Seven groups, representing the seven cache sizes
used in experiments, have been defined, using the
following rules. Table 3 shows the limits of each
group:

• Upper limit of group n is defined as z/64, where
z=2n and n = 1..6

• An experiment xi, with ratio_size r, will belong
to group n if: Upper limit of group n-1 < r <
Upper limit of group n

Once again, behavior of locking cache is the same
independently of the scheduler used. However, there
are some slight differences between πs and πe . To
study these differences with more detail, the data
presented in Fig. 4 and Fig. 5 is divided into four
spaces regarding the value of SSR. These four
spaces, called from A to D are described below.
Table 4 and Table 5 shows a statistical summary of
spaces A to D for both schedulers.

Space A: This space comprises groups 1, 2, and part
of 3 (SSR below 0.08). In this space, around 80%
(84% for fixed-priority scheduler and 82% for EDF
scheduler) of the experiments present a π value equal
or greater than 1 with low variability. Also, π rises as
the SSR increases. The behavior of this space is due
to the large difference between cache size and code

size. For small cache size, the intra-task interference
is very high, and only a few number of instructions
remain in the cache for two or more executions.
However, the locking cache avoids replacement, thus
the instructions locked in the cache always produce
hit. For instructions not locked, their behavior is the
same as in conventional small caches, replacing from
temporal buffer after each execution. Space A shows
a small increase of performance for the locking cache
on the right side. While the conventional cache
experiences the same intra-task interference when
cache size increases in few bytes, locking caches
profit from each byte added to cache size. In
addition, the inter-task interference is high for the
conventional cache, but not for the locking cache.

Space B: This space comprises the part of group 3
not included in space A, group 4 and part of group 5
(SSR below 0.37). Only 21% of the experiments (for
both schedulers) have a performance equal or greater
than 1. The variability is very high, as the distance
between upper and low quartile reflects. Performance
of the locking cache falls down quickly as SSR rises.
In this space, the dynamic behavior of the
conventional cache profits from cache size, because
many pieces of code with high degree of locality fit
into cache. However, the locking cache must assign
the cache lines to only a small set of instructions. The
effect of inter-task interference is favorable to the
locking cache, but its effect on performance of
conventional cache is relatively low since cache size
is still low.

Table 3 Upper limits and cache size for grouping

Group Cache size Upper limit
1 1 Kb 0,03125
2 2 Kb 0,0625
3 4 Kb 0,125
4 8 Kb 0,25
5 16 Kb 0,5
6 32Kb 1
7 64 Kb ∞
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Fig. 2.  Scatterplot of πs versus SSR
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Fig. 3. Scatterplot of πe versus SSR
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Space C: This space comprises part of group 5 and
all experiments of group 6 (SSR lower than 1). In this
space, only 17% of experiments presents a
performance equal or greater than 1 for fixed-priority
scheduler, and this percentage lowers to 6% for the
EDF scheduler. The behavior of the locking cache in
this space is the inverse than in space B. As SSR
rises, the performance of the locking cache improves,
because only instructions with very low degree of
locality are forced to remain in the main memory.
When the value of SSR is close to 1, the value of π is
close to 1. Regarding inter-task interference, since
cache size is now large, the impact of cache-refill
penalty is very high and preemptions penalize
performance in conventional caches.

Space D: This space comprises experiments fitting in
group 7, all of them with SSR equal or greater than 1.
In all cases, all experiments have performance equal
or greater than 1, because all instructions are
preloaded and locked in the cache. Neither intra-task
nor inter-task interference exists, both in
conventional and locking caches. But the locking
cache may present a slight improvement in
performance because when the system begins full
operation, the cache is fully loaded, and no
mandatory misses happen.

Conclusions from the four-spaces analysis are clear.
The relationship between locking cache size and
system size (as the sum of all tasks’ sizes) allows the

designer of real-time systems to estimate the
performance provided by static use of locking cache
in front of conventional caches.

However, as opposed to the previously shown results,
the analysis of the locking cache performance by
means of four spaces show that there are differences
between some characteristics of πs and πe.
Apparently, locking caches provides worse
performance under EDF scheduler than under fixed-
priority scheduler, since the number of experiments
with values of π above 1 is greater for fixed-priority
scheduler, and the average value of πs is greater than
average value of πe.

A paired-sample analysis (Jain, 1991) for each space
provides information about the differences between
average values of πs and πe. This paired-sample
analysis is possible because each set of tasks has
been evaluated under both schedulers. Table 6 shows
the analysis summary. Avg. of Diff. is the average of
differences of each pair of experiments, that is, πs

value of experiment i minus πe  value of the same
experiment i. The result is the response given by the
Null Hypothesis Test, using a t-test with alpha = 0.01
(99%) and hypothesis = 0.00. Reject means that the
average significantly differs from 0. P-Value is a
measure of significance. Value equal or greater than
0,01 indicates that the Null hypothesis (that is,
average = 0,00) cannot be rejected at the 99% of
confidence level.

The result of the test is the same for the four spaces:
there is no significant difference between average
values of πs and πe. That is, in a general sense,
performance of locking cache is the same for both
fixed-priority and EDF schedulers.
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Table 4 Statistical summary for spaces A to D of πs

Space A B C D
Total experiments 56 56 34 36
Exps. with π> 1 83.9% 21.9% 17.6% 100%
Exps. with π> 0.9 91.1% 26.8% 35.3% 100%
Average 1.03 0.77 0.79 1.05
Median 1.05 0.67 0.79 1.03
Minimum 0.47 0.35 0.43 1.00
Maximum 1.36 1.29 1.07 1.16
Low quartile 1.01 0.53 0.65 1.02
High quartile 1.10 0.93 0.96 1.09
Std. deviation 0.17 0.27 0.19 0.05

Table 5 Statistical summary for spaces A to D of πe

Space A B C D
Total experiments 56 56 34 36
Exps. with π > 1 82,5% 21,4% 6,1% 100%
Exps. with π > 0.9 89,5% 30,4% 33,3% 100%
Average 1,02 0,76 0,79 1,03
Median 1,05 0,70 0,83 1,00
Minimum 0,47 0,36 0,45 1,00
Maximum 1,36 1,29 1,02 1,13
Low quartile 1,02 0,55 0,66 1,00
High quartile 1,10 0,93 0,94 1,04
Std. deviation 0,19 0,26 0,17 0,04

Table 6 Paired-sample analysis for πs vs. πe

Space Avg. of Diff P-Value Result
A 0,00178593 0,518664 No Reject
B -0,00471085 0,249892 No Reject
C -0,00294133 0,737337 No Reject
D 0,00246365 0,0251184 No Reject



5. CONCLUSIONS

This work presents an analysis of performance of the
static use of locking cache, under fixed-priority
scheduler and Earliest Deadline First scheduler, with
regard to two system main characteristics. Also,
comparison of performance behavior under both
schedulers has been presented. Performance has been
defined as the relationship between the system
utilization when conventional cache is used, versus
system utilization when static use of locking cache is
used.

The behavior of locking-cache performance versus
System Size Ratio has been divided into four
scenarios. A strong relationship between locking
cache performance and this ratio has been noticed
and identified, as well as the variability in the values
of performance. Therefore, the real-time designer
may estimate, without any experiment, the cost of
using a locking cache, that is, the probability to lose
performance and get a worse utilization than using
conventional caches. For extreme values of the
relationship between cache size and system size, the
locking cache offers in most cases better performance
than the conventional cache. For central values of
this relationship, the locking cache offers worse
performance than the conventional, unpredictable
cache.

The paired-sample analysis shows that there is no
significant difference in average values of
performance when using static or dynamic scheduler.
Results from this test, joined with the several figures
and statistical summaries show that the behavior of
locking cache, from the performance point of view, is
the same independently of the algorithm used to
schedule the tasks. This way, the kind of scheduler is
not a major parameter in deciding the use or not of
locking cache.
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