
COMBINED INTRINSIC-EXTRINSIC CACHE

ANALYSIS FOR PREEMPTIVE REAL-TIME

SYSTEMS

A. Mart, X. Molero, A. Perles, F. Rodrguez, and J.V. Busquets

Departament d'Informtica de Sistemes i Computadors

Universitat Politcnica de Valncia, Spain

email: amarti@disca.upv.es

Abstract: Cache memories are widely used to improve computer performance, but
their inherent unpredictability presents new problems when cached systems must be
analysed. In preemptive, multitask real-time systems, the cache memories have been
analysed from two complementary points of view. First, calculating the Worst Case
Execution Time (WCET) of each task considering no preemptions. Second, making
the schedulability analysis considering the e�ect of cache when tasks are preempted.
Both aspects of the same problem (performance variation due to cache) have been
historically treated independently. This paper presents a new approach to deal with
both problems altogether when a direct mapped cache is used for instructions. Solving
both problems jointly provides greatter accuracy in the schedulability analysis.
Copyright c2000IFAC

Keywords: Cache Memories, Response Times, Execution Times, Algorithms

1. INTRODUCTION

Caches greatly contribute to increase computer
performance. But the use of cache memories in
preemptive real-time systems presents two prob-
lems because of their unpredictable behaviour.
The �rst problem is to calculate the Worst-Case
Execution Time (WCET) of cached tasks, due to
intra-task interference. The second problem is to
calculate preemption cost due to the inter-task
cache interference. Intra-task or intrinsic inter-
ference arises when a task removes its own in-
structions from cache. When removed instructions
are executed again, a cache miss increases the
execution time of the task. Inter-task or extrinsic
interference arises in preemtive, multitask systems
when a task removes another task from cache.
When the preempted task resumes execution a
burst of cache misses increases its response time.

1 This work is supported by project CICYT TAP990443-

C05-02

During the past few years, several proposals have
been presented to obtain the WCET of tasks tak-
ing into account the cache speed-up (Mueller and
Wegener, 1998; Lim et al., 1994; Li et al., 1996).
These techniques assume that the task under anal-
ysis executes without preemption, because from
the point of view of program analysis, the pre-
emption point is unknown. Other papers have
addressed the extrinsic cache interference problem
in the schedulability analysis in preemptive sys-
tems, extending non-cached analysis (Busquets et
al., 1996; Basumallick and Nilsen, 1994; Lee et al.,
1997). These calculate the increment in the task
response time (called cache re�ll penalty or cache-
related preemption delay) and add this time to
the pre-calculated WCET. The importance of the
cache re�ll penalty is shown in (Lee et al., 1999),
where selecting the preemption point with min-
imal inter-task interference improves schedulable
utilization by up to 40%. None of the techniques
to compute the extrinsic interference obtains valu-

a a

a a

a a
"Combined Intrinsic-Extrinsic Cache Analysis for Preemptive Real-Time Systems" A. Martí Campoy, X. Molero, A. Perles, F. Rodríguez and J.V. Busquets.Real-Time Programming 2000. Proceedings of 25th IFAC Workshop on Real-Time Programming. pp 49-55. Pergamon, 2000

a a

a a

able information from the WCET analysis except
(Kastner and Thesing, 1999), where cache analysis
is made in each preemption point. However, (Lee
et al., 1999; Kastner and Thesing, 1999) work with
non preemtive or limited preemptive systems. We
argue in this paper that the cache re�ll penalty
can be obtained while obtaining the WCET for
the task, and that the resulting value is more ac-
curate when calculated in this way for preemptive
real-time systems.

Figure 1 shows an example of a simple task with
four blocks (a block is the minimum unit of
information that can be either present or not in
the cache-main memory hierarchy) using a direct-
mapped cache. Instructions in blocks 2 and 3
compete for the same cache line, C1. In the WCET
analysis it is considered that execution of blocks
2 and 3 will always produce cache misses due to
the possibility of alternate paths while executing
the loop. Analysing the inter-task interference for
the schedulability analysis, the time to reload the
contents of cache line 1 must be considered after
a preemption, because it is possible that the task
executes the loop using the same path repeatedly.
If no other information is used from the WCET
analysis but the value of the task WCET, the
miss penalty of cache line 1 is counted twice in
the global analysis: in the task WCET and in the
cache re�ll penalty. However, the displacement of
instructions from cache line 1 after a preemption
does not increase the task response time over the
pre-calculated WCET (as it has been considered
that addresing cache line 1 will always produce a
cache miss).

To avoid this overestimation, this paper presents a
novel approach to o�er a unique and coherent so-
lution to both problems. The proposed approach
has been developed with simplicity in mind for
its use in real applications. This solution uses a
set of simple and fast algorithms to obtain an
upper-bound of the WCET of cached tasks con-
sidering intra-task interference. In addition (and
what makes it di�erent to other approaches) it
also provides a coherent estimation of the preemp-
tion cost to be considered in the schedulability
analysis to cope with the inter-task interference,
o�ering a global solution to the problem when
a direct mapped cache is used for instructions.
As a �rst approach, this work has been focused
only on instruction caches. On average, four out

n V1
C0

V5
C2

V3
C1

V2
C1

Vertex
number
Cache
line

Fig. 1. An example of overestimation

of �ve memory accesses are instruction fetches
(Hennessy and Patterson, 1996), thus instruction
cache has greater inuence on the processor per-
formance.

2. WCET CALCULATION

The �rst step to make the schedulability analysis
is to calculate the WCET of each task. In this
section, algorithms to calculate the WCET of a
cached task are presented. The method to obtain
the WCET is divided into three parts: expression,
categorisation, and resolution. First, an expres-
sion to calculate the task WCET is obtained. Sec-
ond, the execution time of each vertex is obtained,
as a function of the cache state. Finally, evaluating
the expression using the vertex execution time
provides the task's WCET. The algorithms pre-
sented ful�ll into two goals: �rst, they allow a fast
and easy analysis, and second, they provide useful
information to calculate the cache re�ll penalty.

2.1 Expression

From the task's Control Flow Graph and machine
code, a new Control Flow Graph, called cached-
cfg (c-cfg), is created following these rules:

� A vertex is a sequence of instructions without
ow break.

� All instructions on a vertex map in the same
cache line.

� A vertex can appear only once in the c-cfg.

This model di�ers from conventional CFG in the
meaning of a vertex, since in this model the vertex
models not only the task's paths but also how the
cache is used. Figure 2 illustrates an example.

Function calls in the c-cfg (that violate the third
condition above) are replaced by the c-cfg of the
function body, renaming the vertexes to make
them unique but maintaining the block number
(as if the function were compiled as an 'inline'
function). For each vertex the following informa-
tion is stored:

� The execution time of each vertex in case
of cache miss (Tm) and in case of cache hit
(Tc).

� The block number for each vertex.
� The cache line number where the vertex
maps.

� If the vertex is a loop begin, maximum num-
ber of iterations (user provided).

� Number of edges that reach the vertex, with-
out counting closing-loop edges (join �eld).

Restrictions imposed to tasks are (See �gure 3):

Cache line size: 4 instructions
V: Number of Vertex.
N: Number of Block.

Branch: Conditional Branch
Jump: Inconditional Branch
Seq: No Branch Instruction

Seq

Jump

Branch

V 1
N 1

V 5
N 3

V 4
N 2

V 3
N 2

M
e

m
o

ry
B

lo
c

k
 1

M
e

m
o

ry
B

lo
c

k
 2

M
e

m
o

ry
B

lo
c

k
 3

V 6
N 4

M
e

m
o

ry
B

lo
c

k
 4

Seq

Seq
Seq
Seq

Seq
Seq

Seq
Seq
Seq
Seq

Seq
Seq
Seq

V 2
N 1

Fig. 2. Cache-Control Flow Graph example

� The task begins in a single vertex and ends
in a single vertex.

� Loops have a unique exit vertex.
� Only two edges can depart from a vertex.
� No recursive function calls are allowed.
� Only simple program constructs are allowed
in the task cfg.

These programming structures allow the task cfg
to be represented with a simple string, an ex-
pression that can be evaluated to obtain the task
WCET. Though the last restriction seems too
strict, complex control structures can be rewrit-
ten using a combination of these. This can be
accomplished using specialized compilers, or with
a post-processing tool that rewrites the task cfg.
Figure 3 shows the WCET expression for the
allowed task structures. In the WCET expression,
Ei represents the execution cost of vertex i, which
will depend on its instructions and the cache state.

The algorithm recursively traverses the c-cfg up-
dating the expression depending on the vertex
type (simple, join, fork or loop-head) as depicted
in �gure 3. When the algorithm �nds a "special"
vertex (join, fork or loop-head), it updates the
expression adding the corresponding string to the
WCET expression, eliminates the vertex attribute
and reprocesses it. In this way, the special vertex
is gradually transformed into a simple vertex, �-
nally the algorithm adds the vertex number to the
expression. Simultaneously, if a vertex is inside a
loop, this vertex is marked with the number of
the loop-head vertex. For nested loops, the vertex
is marked with all loop-head vertexes. Algorithm
cost is O(n), n being the number of vertexes in the
c-cfg. The main characteristic of the expression
obtained is that each vertex appears only once.

1 1 1 Fork

Fig. 3. WCET expressions and vertex types

Table 1. C-cfg of Figure 4 task

Vertex Block Edge Itera- Join Cache Mark
num. 1/2 tions line

1 1 2/0 1 1 0 0
2 2 3/0 10 1 1 2
3 2 4/0 15 1 1 2,3
4 4 5/6 1 1 2 2,3
5 4 7/0 1 1 0 2,3
6 6 7/0 1 1 0 2,3
7 7 8/3 1 2 0 2,3
8 8 9/0 1 1 1 2
9 8 0/0 1 1 0 0

This will allow a uni�ed treatment of compul-
sory and conict misses (Hennessy and Patter-
son, 1996), as well as simplifying the cached task
WCET calculation.

Figure 4 presents the c-cfg of a sample task. All
the information stored for each vertex is contained
in table 1. The mark �eld indicates the loop-head
vertex for each loop. The cache lines for each
vertex have been manually selected for subsequent
examples.

2.2 Categorisation

To evaluate the WCET expression obtained in the
previous section, it is necessary to know the exe-
cution time of each vertex. In absence of a cache,
the execution time of a vertex is the sum of the
execution times of each of its instructions. How-
ever, when a cache is present, this cost can vary in
each execution. In this section, a categorisation of
each vertex is presented, that will indicate if the
vertex is in cache each time it is executed, thus
indicating its execution time. Mueller et al. (1998)
use a categorization to calculate WCET when
cache memory is used, creating an accurate and
precise categorisation, allowing a more accurate
WCET. However, the principal objective of this
paper is not only to calculate an accurate WCET,
but also to obtain the necessary information to
calculate the cache re�ll penalty produced by task
preemptions. In this way, the authors have pre-
ferred to simplify the categorisation, introducing
an overestimation in the obtained WCET, but
that potentially reduces the cache reload cost after
preemptions. In this way, three vertex types are
de�ned:

Fig. 4. WCET expression of an example task

Unique: it is the only vertex mapped onto a
particular cache line. Therefore, during the ex-
ecution time of the task only the �rst time the
vertex code is executed will produce a cache
miss.

Shared: two or more vertexes map onto the same
cache line but they are mutually exclusive. Once
one vertex is replaced from the cache, it will
never be executed again. Like the former type,
this vertex type su�ers from cache miss only in
its �rst execution.

Conict: two or more vertexes with di�erent
block number map onto the same cache line,
and a vertex replaced from cache can be exe-
cuted again. Vertexes of this type can su�er an
indeterminate number of cache misses.

The algorithm to categorise c-cfg vertexes is easy:
a vertex that maps alone in a cache line is Unique.
A vertex a that maps in the same cache line that
vertex b (a and b with di�erent block number) is
classi�ed as Conict if paths exist to reach a from
b, and to reach b from a. Otherwise, a is Shared. As
the computational cost to determine the existence
of a path from a to b and vice-versa is very high,
the conict condition is rede�ned as follows: a pair
of vertexes a and b conict if and only if both
are marked with the same loop-head, because if
vertexes a and b are inside the same loop, then
there is a path from a to b and viceversa.

However, for nested loops it is necessary to iden-
tify the dependencies between di�erent nest levels.
In this way, a vertex will be categorised for each
loop that it belongs to, and the classi�cation of
a vertex at a given level will depend exclusively
on vertexes existing at the same level. This in-
cludes the vertexes in the same loop and inner-
most loops, but not those in the outermost. In
this way the categorisation takes into account the
dependencies created between vertexes belonging
to di�erent loops.

For each vertex and for each nesting level, the
algorithm searches for another vertex mapping
to the same cache line and with di�erent block
number. If such a vertex exists, and belongs to
the same or innermost nesting level, both vertexes
are classi�ed as Conict for this nesting level.
Otherwise, the vertex will be classi�ed as Unique
or Shared.

In the worst case, all vertexes map in the same
cache line, and they are at the same nesting level.
In this particular case, l�n� (n�1) comparisons
are needed, n being the c-cfg vertex number and
l the maximum nesting level. These comparisons
do not need to traverse the c-cfg, as the mark
�eld directly indicates the existence of a path
between any two vertexes in the c-cfg, and easy
optimizations are possible. Table 2 presents the

Table 2. C-cfg of Figure 4 task cate-
gorised

Vertex Categorisation

1 Shared
2 Conict2
3 Conict2

Shared3
4 Unique
5 Conict2

Conict3
6 Conict2

Conict3
7 Concit2

Conict3
8 Conict2
9 Shared

result of applying the categorisation algorithm to
the c-cfg of the �gure 4.

2.3 Resolution

Once the categorisation for each vertex is ob-
tained, it only remains to evaluate the expression,
using the execution time of each vertex as a func-
tion of its categorisation. However, in a system
with a cache, the execution cost of such a vertex
will depend on its categorisation for each nesting
level. Therefore, the execution time of a vertex in-
side a nested loop will be calculated independently
for each level using the vertex categorisation for
that level, beginning in the innermost loop, and
combining the obtained times.

The WCET expression obtained guarantees that
a vertex will appear only once, which allows the
calculation of the WCET to be simpli�ed by
dividing the process into the following cases:

The vertex is outside a loop: this vertex will be ex-
ecuted only once, therefore this occurrence is the
�rst and last. Independently of its categorisation,
the execution time is Tm.

The vertex is within a single loop of n iterations.
In this case, the vertex will be executed n times
and the execution time will depend on its cate-
gorisation:

� Unique: the �rst time this vertex is executed
produces a compulsory miss, and will stay in
cache while the task is executed. Execution
time is: Tm+ (n� 1)� Tc.

� Shared: the �rst time this vertex is executed
produces a compulsory miss and will stay in
cache during the following n � 1 executions,
producing hits. It can be replaced from cache,
but it will not execute after this. Execution
time is again: Tm+ (n� 1)� Tc.

� Conict: it is not possible to guarantee that
the vertex will stay in cache after each ex-
ecution. Therefore each execution must be
considered as a cache miss, taking: n� Tm.

The vertex is inside z nested loops, with iterations
n1; n2; : : : ; nz. The combinations of the vertex cat-
egorisation at each level (considering 1 as the out-

ermost and z as the innermost levels, respectively)
are given below:

� All unique: if this categorisation is applied
for every loop, the execution time is Tm +
((n1 � n2 � : : :� nz)� 1)� Tc.

� All shared: in this case, the vertex can be
replaced from cache if it is no longer used, so
the execution time is Tm+ ((n1 �n2� : : :�

nz)� 1)� Tc.
� All conict: in this simple case, the execution
time is n1 � n2 � : : :� nz � Tm.

� Conict 1 - ... - conict k - shared k+1 - ...
- shared z: the cache misses for the vertex
can be produced in the 1, ..., k outermost
loops only. Every time the execution ow
exits from the k + 1, ..., z innermost levels,
a cache miss must be counted, so the time is
n1� : : :�nk�Tm+n1� : : :�nk� ((nk+1�

: : :� nz)� 1)� Tc.
� Other combinatios are not possible, due to
the fact that when a vertex is categorised as
conict in an nested loop, it is assumed that
it will be replaced from cache every time it
is executed. As each vertex can appear only
once, it is not possible to consider the vertex
as shared at the outer levels.

The cost of the algorithm is O(n), where n is
number of vertexes in the c-cfg.

3. SCHEDULABILITY ANALYSIS

To carry out the schedulability analysis of cached,
preemptive real-time systems, the equation of
Cache Response Time Analysis (CRTA) presented
by Busquets (Busquets et al., 1996) is used:

wn+1
i = Ci +Bi +

X
j2hp(i)

�
wn
i

Tj

�
� (Cj + j)(1)

where wi denotes the response time of task �i,
Ci the WCET of �i considering the presence of a
cache, Bi denotes the task blocking time, Tj is the
period of task �j and j indicates the cache re�ll
penalty added to task �i for each release of task
�j . The set hp(i) is the set of tasks with higher
priority than �i.

From the CRTA equation, all values can be easily
obtained except the cache re�ll penalty for each
task, j . To obtain this value it is necessary to
know the number of useful lines of each task,
de�ning a line as useful when the block loaded
in this line executes two or more times before
it is replaced from cache. This analysis must be
performed with a conservative criterion. If it is
not possible to decide exactly if a line is useful,
it must be considered as useful to guarantee
an upperbound of the cache-related preemption

delay. However, when calculating the WCET, the
conservative criterion is the opposite: if it is not
possible to decide exactly if a line is useful, it
must be considered as not useful (cache miss) to
guarantee an upperbound of the WCET. If we call
Uw the number of useful lines for the WCET, and
we call Ua the number of useful lines that will
be considered in the schedulability analysis, we
usually obtain Ua > Uw, what introduces a double
conservatism as shown in the introduction.

To reduce this double conservatism, the useful
lines of a task are obtained from the algorithms
previously presented. In this way, the number of
useful lines is the number of di�erent cache lines
which vertexes map into, provided that they are
categorised as Unique or Shared and they are
inside a loop. Only the displacement of these lines
from cache after a preemption increases the re-
sponse time of the task, thus only these lines must
be considered as useful. However, not all of these
lines are actually useful. A multiple-categorised
vertex (a vertex inside a nested loop), produces a
useful line if at least one of its categories is Shared
or Unique.

In this way, the number of useful lines can be
trivially obtained from the categorisation and
the mark �eld using the �rst algorithm. In the
example of �gure 4, vertexes that produce useful
lines are 3 and 4 (1 and 9 are not inside a loop),
and these vertexes map in cache lines 1 and 2,
therefore the number of useful lines is 2.

This information (the number of useful lines of
each task) can be applied in the equation of the
CRTA in several ways. A linear programming
technique can be used, as explained in (Lee et
al., 1997) or the process described in the next
paragraph can be applied. The �rst method is
more accurate, the second is easier and faster.

The cache-related preemption delay su�ered by
a task depends on the direct interference (useful
lines replaced by the preempting task), and the in-
direct interference (the preempting task increases
its response time because its useful lines are re-
placed from cache by a higher priority task). The
value of i will be the maximum number of useful
lines that the task �i or a higher priority task (ex-
cept the highest) must reload after a preemption.
This results in the following equations:

i = max
j2hp(i)�1

(usefulj) (2)

wn+1
i = Ci +Bi +

X
j2hp(i)

�
wn
i

Tj

�
� (Cj + i)(3)

This value is an upperbound of the cache-related
preemption delay, and it is coherent with the ex-
ecution times calculated for the tasks. This guar-
antees valid results and precludes double overesti-

mation. In addition, the complete process is easy
and it has a low computational cost.

4. EXPERIMENTAL RESULTS

The algorithms presented to calculate the WCET
of cached tasks have been implemented in an
application created in C++ and executed on a
mid-range personal computer. Two kinds of ex-
periments have been performed: experiments to
show the computational time of algorithms and
experiments to evaluate the accuracy of the esti-
mated WCET.

To evaluate the computational time of algorithms,
several c-cfgs not representing real tasks, with
di�erent number of vertexes and cache sizes have
been processed. Results are shown in table 3. For
all cases, response time of algorithms are lower
than one minute.

The accuracy of the estimated WCET is evaluated
by processing four small functions:

� Task1: a task that calculates the sum of the
�rst one hundred numbers.

� Task2: a task that sequentially searches for
the maximum element in a one hundred ele-
ments array.

� Task3: a task with two nested loops, with 10
iterations each one, calculating the sum of
innermost counter.

� Task4: the same as task3, but the number
of iteration of the inner loop depends on the
counter of the outermost loop.

These tasks were written in C, compiled with
gnu gcc compiler and disassembled on a Silicon
Graphics workstation, with MIPS R5000 and Irix
OS. The actual WCET of di�erent tasks has
been calculated using a modi�ed version of SPIM
(Patterson and Hennessy, 1994), a simulator for
MIPS RISC processors. The main modi�cation
consists in adding an array that represents the
cache tag. Executing an instruction from main
memory costs 11 units, and executing an instruc-
tion from cache costs 1 unit.

The cache-simulated WCET has been obtained
using the WCET expression and a table where
the instruction address loaded in each cache line
is maintained. With this information, the WCET
expression is recalculated for each loop iteration,

Table 3. Examples of calculated c-cfgs

c-cfg Cache WCET Vertex WCET
size size expr cat calc

(vertexes) (lines) (sec) (sec) (sec)

10 1 1 1 1
100 1 1 9 1
100 10 1 1 1
1000 100 6 17 2
1000 500 6 7 7
2000 500 18 24 7
2000 1000 18 19 8

Table 4. Task execution cycles

Task Cache itera- Spim Expr Esti- Error
lines tions sim. sim. mated

Task1 2 100 2952 2952 2962 0,34%
Task1 4 100 972 972 982 1,03%
Task2 4 100 8237 8237 8347 0,24%
Task2 4 500 41527 41527 41547 0,05%
Task3 2 10x10 3333 3333 3453 3,6%
Task3 4 10x10 1263 1263 1293 2,3%
Task3 4 20x20 4253 4253 4283 0,7%
Task4 4 10x10 1153 1563 1693 49,1%

/8,3%
Task4 4 20x20 3185 5063 5293 66,1%

/4,5%

considering the cache contents (not the vertex
categorisation). Finally, the estimated WCET has
been calculated using the WCET expression, the
vertex categorisation and the procedure to solve
the expression shown in section 2.

Results are shown in table 4. For task1, task2 and
task3, results from SPIM simulation and expres-
sion simulation con�rm that the WCET expres-
sion actually represents the task WCET. In task4,
the error in the simulated expression is due to an
erroneous speci�cation of the maximum number
of iterations of the inner loop. This number of
iterations is statically speci�ed, while the actual
task has a dynamic value that depends on the
outer loop counter. Table 4 shows, for task4, the
overestimation with respect the actual WCET due
to loops and cache, and with respect to expression
simulation due to the cache only. Regarding the
estimated WCET, a small overestimation is ob-
tained due mainly to simpli�ed categorisation of
divided blocks.

5. CONCLUSIONS AND FUTURE WORK

This paper has presented a uni�ed and coherent
solution for both aspects to be considered when
using a cache in preemptive real-time systems:
intrinsic and extrinsic interference. Historically,
they were treated as two separate and indepen-
dent problems: the intra-task cache interference
in the WCET estimation, and the inter-task in-
terference in the schedulability analysis.

The work carried out obtains the WCET from
the task Control Flow Graph and the machine
code, and also obtains the necessary information
to perform the schedulability analysis considering
the cache e�ect. Three easy and practical algo-
rithms obtain this information. The calculated
WCET maybe worse than the one obtained with
other methods, but it may o�er a more accurate
response time when calculating the schedulability
analyisis.

The future and ongoing work has three lines: the
re�nement of WCET calculation, without exces-
sive increase in response time, the re�nement of
cache-related preemption delay (i) calculation
for the CRTA equation, and tunning: the ultimate

objective is to obtain a response to the question:
is my system schedulable? A large number of
cache lines categorised as useful will produce a
low WCET, but will increase considerably the
cache-related preemption delay. It seems possi-
ble to obtain algorithms that modify the vertex
categorisation, penalising WCET, but improving
the cache-related preemption delay. The authors
believe that the focus may be changed: obtaining a
good trade-o� between the intrinsic and extrinsic
cache behavior may provide better schedulability
than looking for more accurate cached WCET.

6. REFERENCES

Basumallick, S. and K. D. Nilsen. Cache Issues
in Real-Time Systems ACM SIGPLAN Work-

shop on Language, Compiler, and Tool Support

for Real-Time Systems, June 1994.
Busquets-Mataix, J.V, A. J. Wellings, J.J. Ser-

rano, R. Ors and P. Gil. Adding Instruction
Cache E�ect to an Exact Schedulability Anal-
ysis of Preemptive Real-Time Systems. 8th Eu-
romicro Workshop on Real-Time Systems, 8-
15, L'Aquila, Italy, June 1996.

Hennessy, J. L. and D. Patterson. Computer Ar-
quitecture. A Quantitative Approach Second
Edition. Morgan Kaufmann. San Francisco,
1996.

Kastner, D. and S. Thesing. Cache Aware Pre-
Runtime Scheduling The Journal of Real-Time
Systems, 17, 235-236.

Lee C., J. Hahn, Y. Seo, S. L. Min, R. Ha, S.
Hong, C. Y. Park, M. Lee, C. S. Kim. Enhaced
Analysis of Cache-related Preemption Delay in
Fixed-Priority Preemptive Scheduling Proc. of
the 18th IEEE Real-Time Systems Symposium,
December 1997.

Lee, S., S. L. Min, C. S. Kim, C. Lee, M. Lee
Cache-Conscious Limited Preemptive Schedul-
ing The Journal of Real-Time Systems, 17,
257-282.

Li, Y. S., S. Malik, and A. Wolfe. Cache Mod-
eling for Real-Time Software: Beyond Direct
Mapped Instruction Caches Proc. of the 17th

IEEE Real-Time Systems Symposium, Decem-
ber 1996.

Lim, S. S., Y. H. Bae, G. T. Jang, B. D. Rhee,
S. L. Min, C. Y. Park, H. Shin, K. Park, and
C. S. Kim. An Accurate Worst Case Timing
Analysis Technique for RISC Processors Proc.
of the 15th IEEE Real-Time Systems Sympo-

sium, December 1994.
Mueller, F. and J. Wegener. A Comparison of

Static Analysis and Evolutionary Testing for
the Veri�cation of Timing Constraints Proc.

of 4th IEEE Real-Time Technology and Ap-

plications Symposium, Denver, Colorado, USA,
1998.

Patterson, D. and J. L. Hennessy. Computer Orga-
nization & Design. The Hardware/Software In-

terface Morgan Kaufmann. San Mateo, 1994.

