
i

Proceedings of the

15th International Conference
on Real-Time and Network Systems

RTNS’07

LORIA, Nancy, France

29-30 March 2007

http://rtns07.irisa.fr

Towards Predictable, High-Performance Memory Hierarchies in Fixed-Priority
Preemptive Multitasking Real-Time Systems

E. Tamura
Grupo de Automática y Robótica

Pontificia Universidad Javeriana – Cali
Calle 18 118–250, Cali, Colombia

eutamo@doctor.upv.es

J. V. Busquets-Mataix and A. Martí Campoy
Departamento de Informática de

Sistemas y Computadores
Universidad Politécnica de Valencia

Camino de Vera s/n., 46022 Valencia, España
{vbusque, amarti}@disca.upv.es

Abstract

Cache memories are crucial to obtain high performance
on contemporary computing systems. However, sometimes
they have been avoided in real-time systems due to their lack
of determinism. Unfortunately, most of the published tech-
niques to attain predictability when using cache memories
are complex to apply, precluding their use on real applica-
tions. This paper proposes a memory hierarchy such that,
when combined with a careful pre-existing selection of the
instruction cache contents, it brings an easy way to obtain
predictable yet high-performance results. The purpose is to
make possible the use of instruction caches in realistic real-
time systems, with the ease of use in mind. The hierarchy is
founded on a conventional instruction cache based scheme
plus a simple memory assist, whose operation offers a very
predictable behaviour and good performance thanks to the
addition of a dedicated locking state memory.

1 Introduction

Contemporary computing systems include cache memo-
ries in their memory hierarchy to increase average system
performance. In fact, cache memories are crucial to ob-
tain high performance when using modern microprocessors.
While trying to minimise the average execution times, the
contents of the cache memories vary according to the exe-
cution path. General-purpose systems benefit directly from
this architectural improvement; however, minimising aver-
age execution times is not so important in real-time sys-
tems, where the worst-case response time is what matters
the most. Thus, due to their lack of determinism, sometimes
cache memories have been avoided in fixed-priority pre-
emptive multitasking real-time systems: when they are in-
corporated in such a system, in order to determine the mem-

ory hierarchy access times as well as the delays involved in
cache contents replacement it is necessary to know what its
contents are.

Using cache memories in fixed-priority preemptive mul-
titasking real-time systems presents two problems. The
first problem is to calculate theWorst-Case Execution Time
(WCET), due to intra-task or intrinsic interference.Intrin-
sic interference occurs when a task removes its own instruc-
tions from the instruction cache (I-cache) due to conflict and
capacity misses. When the removed instructions are refer-
enced again, cache misses increase the execution time of
the task. This way, the delay caused by the I-cache inter-
ference must be included in the WCET calculation. The
second problem is to calculate theWorst-Case Response
Time (WCRT) due to inter-task or extrinsic interference.Ex-
trinsic interference occurs in preemptive multitask systems
when a task displaces instructions of any other lower pri-
ority tasks from the I-cache. When the preempted task re-
sumes execution, a burst of cache misses increases its exe-
cution time. Hence, this effect, called cache-refill penalty
or Cache-Related Preemption Delay (CRPD) must be con-
sidered in the schedulability analysis.

This work proposes

• a memory hierarchy that provides high performance
coalesced with high predictability. The solution is to
be centred on instruction fetching since it represents
the highest number of memory accesses [15];

• the required schedulability analysis for such hierarchy;
and

• some evaluation results and its analysis.

Results show that

• the proposed memory hierarchy is predictable and sim-
ple to analyse;

75

• its performance exceeds that of the dynamic use of
locking cache as given in [10]; and

• in many cases, its performance is about the same than
that obtained when using a conventional instruction
cache.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the problem and summarises some of the
solutions found in the literature. Section 3 describes the
proposed memory hierarchy, its requirements, a functional
description of its operation and the schedulability analysis.
Section 4 assesses the proposed memory hierarchy by com-
paring it with the dynamic use of locking cache as given
in [10]. First predictability and prediction accuracy are ex-
amined by comparing estimated and simulated worst-case
response times. Performance is evaluated by measuring the
worst-case processor utilisation. Some concluding remarks
are given in Section 5.

2 Rationale

In order to guarantee that every task in the task set meets
its deadline, real-time system designers may opt for three
different approaches:

• Use the memory hierarchy in a conventional manner.

• Use the memory hierarchy in a real-time systems suit-
able manner.

• Use a real-time systems aware memory hierarchy.

Each approach will be briefly summarised according to
three different perspectives: architectural viewpoint, imple-
mentation viewpoint and, run-time support viewpoint.

2.1 The memory hierarchy is used in a conven-
tional manner.

When using cache memories in a conventional way, the
memory hierarchy is the same used in any conventional sys-
tem with cache memories; therefore, regarding implementa-
tion and run-time support, there is no need to implement any
additional hardware or software modules. Instead, the real-
time system designer does his/her best to determine whether
each memory reference causes a cache hit or a cache miss.
This is done by using static analysis techniques. Some of
the techniques used for WCET calculation are data-flow
analysis [13, 22], abstract interpretation [1], integer linear
programming techniques [6], or symbolic execution [7]; to
tackle the WCRT estimation data-flow analysis is also used.
Unfortunately, the complexity of static analysis techniques
may preclude their use in practical applications.

2.2 The memory hierarchy is used in a real-time
systems suitable manner.

An alternative to fully exploit the inherent performance
advantage of cache memories while achieving predictabil-
ity is to work with unconventional memory hierarchies.
In this case, instead of conventional cache memories, the
real-time designers favour the use of either locking caches
[10, 18, 25, 2, 17] or scratchpad memories [26, 27]. On the
one hand, locking caches are caches with the ability to lock
cache lines to prevent its replacement; blocks are loaded
into the locking cache and then they are locked. They are
accessed through the same address space as the main mem-
ory. On the other hand, scratchpad memories are an alter-
native to I- or D-caches (data caches). They are small and
extremely fast SRAM memories (since they are usually lo-
cated on-chip); they are mapped into the processor’s address
space and are addressed via an independent address space
that must be managed explicitly by software.

Regarding implementation, in both cases, during the de-
sign phase it is necessary to choose for every task in the task
set which instruction blocks will be either loaded and then
locked into the locking cache or copied into the scratch-
pad memory. The number of selected blocks per task must
not exceed the capacity of either the locking cache or the
scratchpad memory (selecting which information is copied
into a scratchpad is very close to deciding which informa-
tion has to be locked into a locking cache). Once the blocks
are chosen, it is possible to know how much time it would
take to fetch every instruction in the whole task set; there-
fore, the access time to the corresponding memory hierar-
chy is thus predictable. At compile time, the assignment of
memory blocks to either the locking cache or the scratchpad
has to be handled by hand or automatically using a compiler
and/or a linker. However, since scratchpad memories are
mapped in the processor’s memory space, explicit modifi-
cations in the code of tasks may be required to make control
flow and address corrections.

To improve the execution performance of more than one
task (as is desirable in a fixed-priority preemptive multitask-
ing real-time system), the contents of either the scratchpad
or the locking cache memory should be changed at run-time
(dynamic use). Thus, in both cases, the subset of blocks se-
lected for every task should be loaded during system execu-
tion by a software routine, which is executed each time the
real-time system designer judges convenient. Transfers to
and from scratchpad memories are under software control
while for locking caches this is transparent. While a task
is not preempted, it is necessary to ensure that the contents
of either the scratchpad or the locking cache will remain
unchanged. This way, extrinsic interference is eliminated
while intrinsic interference can be bounded. In [10] using
locking instruction caches is proposed to cope with both ex-

76

trinsic and intrinsic interferences; in [25], the use of lock-
ing D-caches is proposed to enhance predictability by in-
serting locking/unlocking instructions: the cache is locked
whenever it is not possible to statically determine whether
the memory references a datum inside the cache or not. In
several cases, the dynamic use of locking I-caches effects
the same or better performance than using a conventional I-
cache [10]. In [27] by using scratchpads performance gains
comparable to that of caches are also obtained. However,
since the amount of scratchpad memory available is often
small compared to the total amount of cache memory avail-
able, intuitively, it is reasonable to think that for task sets
with big tasks the scratchpad memory approach may obtain
lower performance than the cache memory approach.

No matter

1. which mechanism is used to trigger the execution of
a small software routine to either load blocks into the
locking cache (at the scheduler level, as proposed orig-
inally in [10] or via debug registers by raising excep-
tions when the program counter reaches specified val-
ues [2]) or copy blocks to the scratchpad memory; and,

2. the location of the software routine (e.g., in main mem-
ory or even in a scratchpad memory),

the execution of the aforementioned software routine de-
mands valuable processor cycles. Since this execution time
must be added to the task’s WCRT, the overhead introduced
when using either locking caches or scratchpad memories
in a fixed priority multitasking real-time system may have
severe consequences on performance.

2.3 The memory hierarchy is real-time systems
aware.

A third option is to design more predictable memory hi-
erarchies. A memory hierarchy for fixed-priority preemp-
tive multitasking real-time systems must implement mech-
anisms which in some way address the effects of

• intrinsic interference: it must prevent that the contents
of the cache are overwritten by the same task;

• preemption: by allowing the preempting task to over-
write the contents of the cache; and

• extrinsic interference: it must allow that the contents
of the cache are restored when the preempted task re-
sumes execution.

To deal with extrinsic interference, some of the ap-
proaches use cache partitioning techniques, which allocate
portions of the cache to tasks via hardware (I-cache [5], D-
cache [14]), software (by locating code and data so they
will not map and compete for the same areas in the cache)

[28, 12] or a combination of hardware and software [19, 3].
Notice that the technique proposed in [5] introduces unpre-
dictability for blocks that go to the shared pool.

To improve predictability, [4] proposes to extend the
cache hardware and to introduce new instructions to con-
trol cache replacement (kill or keep cache blocks).

In [24], a custom-made cache controller assigns parti-
tions of set associative caches to tasks so that extrinsic inter-
ference is eliminated; cache partitions are assigned to tasks
according to their priorities by using a prioritised cache:
each partition is assigned dynamically at run time; higher
priority tasks can use partitions that were previously al-
located to lower priority tasks. A partition allocated to a
higher priority task cannot be used for a lower priority task
unless the former notifies the cache controller to release the
partitions it owns (which is done when the task is com-
pletely over). Therefore, it might be possible that the high-
est priority tasks consumes the whole cache memory and
jeopardises the lowest priority tasks response times.

The work presented in this paper is a refinement of
previous work [23] and proposes the use of an I-cache
and additional hardware information to influence the I-
cache replacement decision. This “cache replacement pol-
icy” provides a mechanism to increase predictability (time-
determinism) without degrading performance, making it
suitable for use in fixed-priority preemptive multitasking
real-time systems. In this approach, the subset of selected
blocks for each task and the instants in which I-cache flush-
ing takes place are fixed: Every time a task begins or re-
sumes its execution, the I-cache is flushed and then it is
gradually reloaded with selected blocks as the instructions
belonging to the task to be dispatched are being fetched.
The selected blocks are inhibited from being replaced un-
til a new context switch takes place. This way, the access
time to the memory hierarchy is predictable and on the other
hand, each task may use all the available I-cache space in
order to improve its execution time.

In contrast to other approaches, the proposed memory
hierarchy does not need any software to load the selected
blocks into the I-cache at run time and hence it does not
introduce penalties in the task’s WCRT.

3 Memory hierarchy architecture

Efficient operation of the memory hierarchy requires an
efficacious, automatic, on-demand storage control method
that frees the software from explicit management of mem-
ory addressing space. Furthermore, the resulting architec-
ture should not introduce any additional delays and be as
open as possible by using generic components.

77

I−CACHE
TAG RAM

I−CACHE
CONTROLLER

I−CACHE
DATA RAM

aLSW

aLSF

PE
LOCKING

STATE
MEMORY

I−BUFFER

IM

ADDRESS BUS

I−DATA BUS

MWAIT

LSF

SET

WAY

TAG

MATCH

WE WE

V

WE
OE

WE

V

WE

M

WE

V

OE

VALID

STATUS

I−CACHE

I−BUFFER

TAG RAM

I−BUFFER
STATUS

Figure 1. Proposed memory hierarchy

3.1 Description

Figure 1 sketches an architecture that pursues these
goals. As can be seen, the figure does not embody any
locking I-cache; it resembles a system for a conventional
I-cache. There are however three noteworthy differences:

• There is an extra, dedicated, very fast SRAM mem-
ory, theLocking State Memory (LSM), located to the
right of the Processing Element (PE). Its role is to
store the status of every instruction block (theLock-
ing State, LS) in the Instruction Memory (IM), thus
providing a mechanism to discriminate which blocks
must be loaded into the I-cache and hence a way to al-
low for automatic, on-demand loading of the selected
instruction blocks. In other words, instead of locking
selected blocks into an instruction locking cache, the
same effect can be attained by avoiding loading into
the I-cache unselected blocks.

• There is also anInstruction Buffer (I-buffer), with size
equal to one cache line, located below the I-cache con-
troller. Having an I-buffer is not essential, rather it is
more of a performance assist: its purpose is to take
advantage of the sequential locality for those blocks
that should not be loaded into the I-cache. Since the
I-buffer catches and holds previously used instructions
for reuse, it might also contribute with temporal lo-
cality by providing look behind support (via the boxes
drawn with dashed lines in the bottom part of the fig-
ure).

• There is also a subtle difference in the control bits of
the I-cache with respect to a locking cache: since lock-
ing state information is stored into the LSM, locking
status bits are not required.

3.2 Performance requirements

The main goal of the memory hierarchy is to provide
deterministic yet high-performance response times.

In order to achieve determinism, each time a taskτi is
dispatched for execution, its corresponding subset of previ-
ously selected blocks,SBi, is loaded into the I-cache as the
PE fetches them. Once loaded, the selected blocks must re-
main in the I-cache and must not be overwritten as long as
taskτi is either not preempted by other, higher priority tasks
or it finishes. This policy, which is applied to every task in
the task set, eliminates intrinsic interference since the task
is not allowed to remove any block previously loaded into
I-cache, thus contributing to temporal determinism. Fur-
thermore, extrinsic interference is bounded and can be esti-
mated in advance.

Both temporal locality, the tendency to access instruc-
tions that have been used recently, and spatial locality, the
tendency to involve a number of instructions that are clus-
tered, are essential to performance. Hence, by keeping
the SBi blocks loaded in the I-cache, temporal locality is
mainly captured by the I-cache yet spatial locality is also
supported. Besides that, the I-buffer captures spatial local-
ity for those blocks not inSBi, albeit as it was said before,
it might also provide some temporal locality.

With respect to timing issues, the goal is to cause min-
imum overhead during I-cache (re)load: since the LSM is
not in the critical path, IM latency remains the same. LSM
access time however must be in the order of a cache hit time
to operate in parallel with the I-cache and its controller. This
way, the I-cache inner workings are not affected and hence,
its timings remain about the same.

3.3 Storage requirements

Storage requirements for the LS are also very important:
space consumption should be low. Regarding cost, the most
useful measure is to determine how much memory needs to
be added to the system.

The minimum amount of memory required to keep track
of each selected block is one bit. Hence, there will be as
many bits as the number of blocks in the IM. Each of those
bits will store a flag, theLocking State Flag (LSF), which
is used to signal whether the corresponding block should
be loaded into I-cache or not. For LS packing purposes,
however, it is better to group the information into wider,
off-the-shelf, fast SRAM memories. Henceforth assume an
8-bit wide LSM; then, the information for eight blocks (a
parcel) will be stored in oneLocking State Word (LSW) as
shown in Figure 2.

Let L be the I-cache line size in bytes and letbI be the
number of bytes per instruction; then each memory block
hasL/bI instructions. Given an IM of depthdIM = mL,
wherem is the number of instruction blocks, the required
LSM has a depth,dLSM , equal tom/8. Then, the number
of instructions,I, that corresponds to each LSW is given by
I = 8L/bI.

78

LSF0LSF1LSF2LSF3LSF4LSF5LSF6LSF7

LSFr

LSF0LSF1LSF2LSF3LSF4LSF7 LSF6 LSF5

LSF0LSF1LSF2LSF3LSF4LSF5LSF6LSF7

LSF0LSF1LSF2LSF3LSF4LSF5LSF6LSF7

LSW0

LSW1

LSWm/8−1

aLSFr

aLSWr

Figure 2. Locking state memory

Let w be the IM width in bits,a be the width of the ad-
dress bus in bits,K be the degree of associativity andN

the number of sets, thenSIM , the space required for IM;
SCM , the space required for I-cache memory; andSLSM ,
the space required for LSM, are given (in bits) by:

SIM = wmL (1)

SCM = wLKN +

(
a − log2

L

N

)
× KN + KN(2)

SLSM = m (3)

In the expression forSCM , the first term is related to
the I-cache data memory, the second one reflects the space
needed for its tag memory and the last one accounts for its
status bits (just the valid bits are considered). Notice that
lock bits are not necessary since they are grouped into the
LSM.

Therefore, the space efficiency,ηs, which measures the
fraction of memory dedicated to store LS, can be defined as
the ratio of the LSM space,SLSM , to the total amount of
memory space:

ηs =
SLSM

SIM + SCM + SLSM

(4)

3.4 Functional operation

During system design, given a task set,TS, an off-line
algorithm selects a subset,SBTS, from the task set instruc-
tion memory blocks (SBTS =

⋃
SBi, ∀ τi ∈ TS).

The LS associated to TS,LSTS , which reflects the status
of every instruction block in TS, must then be loaded into
the LSM and it will remain fixed during system execution.

When the system starts operating, the PE must reset the
I-cache controller and invalidate all the entries in the I-cache
as well as in the I-buffer.

Now, every time that an instruction,Ir , at addressar is
referenced by the dispatched task,τi, the LSM needs to be
accessed to check the LSW at addressaLSWr

. This is the
address of the LSW that corresponds tomr, the memory

block that embodiesIr. Hereafter, assume a 32-bit wide
instruction size and a byte-addressable IM. Then,aLSWr

is
obtained by stripping off thelog2 8bI least significant bits
of ar.

Finally, it is necessary to extractLSFr, the correspond-
ing LSF withinLSWr to drive theLSF signal and thus de-
termine whether it is necessary to loadmr in the I-cache.
The LSF is indexed by using the3 bits next to thelog2 bI

least significant bits ofar to drive an 8-way multiplexer.
At the same time, the tag formr is compared in the I-

cache directory thus updating theMATCHsignal and its cor-
responding line status is checked via itsVALID bit. Simul-
taneously, the data portion of the I-cache is also accessed.
Based upon theLSF, MATCHand VALID signals, the I-
cache controller may have three possible outcomes:

• TheLSF signal is1, indicating thatmr must be loaded
and locked in the I-cache so the I-buffer is disabled;
in other words,mr ∈ SBi. If the reference causes a
miss (because either there is no tag match or the entry
is not valid),mr is loaded from IM into the I-cache,
the corresponding tag is updated and its valid bit is set.
Afterwards, the I-cache controller, via theMWAITline,
signals the PE that the instruction is available so that it
can restart fetching.

• The LSF signal is 1, but the reference results in a
hit (because the instruction was previously referenced
during the current execution). Then, the PE can fetch
the instruction from the I-cache without incurring in
any further delays.

• TheLSF signal is0, indicating thatmr should not be
loaded in the I-cache; in other words,mr /∈ SBi. In
this case, the I-cache is disabled and it is necessary to
access the IM in order to loadmr in the I-buffer.

Each time a context switch occurs, the scheduler exe-
cutes an instruction that causes that the entire I-cache con-
tents are purged (its valid bits are reset) and therefore, ev-
ery line is invalidated; the I-cache controller should alsobe
reset to avoid that it finishes incomplete operations taking
place when the context switch happened. Not purging the
I-cache might bring better performance but in any case, it
is quite difficult to estimate which blocks will remain in the
I-cache after several preemptions; furthermore, it is harder
to know if those blocks will be used at all once the pre-
empted task resumes execution. Thus, since one of the pri-
mary goals is to keep the schedulability analysis simple, it
is better to purge the cache on each context switch. Notice
however that this may introduce an overestimation in the
schedulability analysis.

Using an LSM in the proposed way imposes a constraint:
since in a conventional I-cache there is no hardware impedi-
ment to replace its lines, the block selection algorithm must

79

guarantee that for any set in the I-cache there will be no
conflict misses. Otherwise, selected blocks, which are al-
ready loaded, may be overwritten. This might cause some
performance improvements, but at the same time, its pre-
dictability will deteriorate and hence, the analyses will turn
more complex.

Aside from this restriction, it is important to note that
the focal feature of the memory hierarchy is the inclusion of
the LSM. With the LSM, the proposed memory hierarchy is
able to provide aVirtual Locking I-cache. Its key advantage
is that it uses a conventional I-cache like a locking I-cache.
This approach then, takes advantage of the I-cache intrinsic
features while at the same time avoids the overhead required
to load instructions into the locking I-cache and the explicit
manipulation of its locking mechanism.

3.5 Schedulability analysis

The schedulability analysis is done in two steps: in the
first step, the WCET of each individual task is calculated
assuming that it is the only task in the system but accounting
for the intrinsic interference. Subsequently, the effect of the
extrinsic interference is considered in the second phase, the
calculation of the WCRT.

Task’s WCET is estimated by using aCache Aware
Control Flow Graph, CACFG, an extendedControl Flow
Graph, CFG [21]. In a CACFG, each memory block is
mapped to a cache block and assigned a block number and
eachbasic block (i.e., each sequence of instructions with a
single entry/single exit point) inside the memory block is
mapped to a different vertex. Thus, CACFG models not
only the flow control of the task through vertices (as it hap-
pens in CFG) but also takes into account the presence of the
I-cache by modelling how the task is affected from the point
of view of the cache structure.

The WCET of tasks may then be easily estimated consid-
ering the execution time of each vertex: Let a taskτi, with
selected verticesVi ∈ SVi ⊆ SBi. The execution time of a
vertex depends on the number of instructions inside it,kVi

,
and the cache state when the instructions inside the vertex
are executed. Since

• in the worst case,SBi, the subset of selected blocks,
and henceSVi, the subset of its corresponding vertices,
will always be loaded on-the-fly by the proposed mem-
ory hierarchy each timeτi executes; and,

• each block, once loaded, will remain in the I-cache as
long as taskτi is not preempted (or it finishes),

it is possible to affirm that, in this particular case, the cache
state forτi is essentially the same during each of its activa-
tions. Thus, the execution times forτi’s vertices are con-
stant across each execution.

Its WCET can then be estimated assuming that all of the
vertices inSVi are already loaded in the I-cache and then
adjust this WCET by accounting for the time required to
loadSBi. Hence, if the subset of selected blocks is already
loaded in the I-cache and the execution time of any instruc-
tion (not including the fetch time) is given bytI , the WCET
for a vertex is given by:

kVi
× (tI + thit), ∀Vi ∈ SVi (5)

kVi
× (tI + thit) + tmiss, ∀Vi /∈ SVi (6)

and Ci, the WCET for any task can be estimated by ap-
plying the approach given in [21]. Notice however that
Equation 6 introduces an overestimation in the schedula-
bility analysis whenever there is a control transfer from one
vertex to any other vertex that belongs to the same memory
block.

Nevertheless, the previous assumption makes necessary
to adjust the execution time of those instructions contained
in every selected block,Bi. Then, for each selected block
Bi not loaded into I-cache, taskτi will incur in an overhead
given bytmiss (a compulsory miss).

When estimating the WCET for every taskτi, the worst
case scenario regarding the blocks inSBi implies loading
all of its blocks. Thus, this preemption penalty can be ac-
counted for by adding the termkSBi

× tmiss to the previ-
ously calculated WCET:

C′
i = Ci + LSBi

(7)

LSBi
= kSBi

× tmiss (8)

wherekSBi
is the number of selected blocks for taskτi.

Notice that when using a scratchpad memory or a locking
cache in a dynamic way (i.e., by modifying its contents
at run time, it is necessary to add an extra term toLSBi

:
∆SWrSBi

, that takes into account the time required to exe-
cute the software routine in charge of replacing the corre-
sponding memory.)

WCRT is then obtained by using Equation 9, where the
I-cache refill penalty due to extrinsic interference is incor-
porated in parameterγi

j
.

wn+1
i

= C′
i +

∑
∀ τj ∈hp(τi)

⌈
wn

i

Tj

⌉
×

(
C′

j + γi

j

)
(9)

Computingγi

j
is not easy because tasks may suffer two

kinds of interference: direct interference or indirect inter-
ference.Direct interference means that a task increases its
response time because it is forced to reload its own instruc-
tions, previously removed by its preempting tasks.Indirect
interference means that a task increases its response time
because executing any other higher priority tasks increases
its response time, due to its own direct and indirect extrinsic
interference.

80

It is hard to know which kind of extrinsic interference a
task will suffer during its execution; then, to consider both
possibilities, it is safe to use the maximum I-cache refill
penalty:

γi

j
=

[
max(kSBj

) + 1
]
× tmiss, ∀ j ∈ hp(i) (10)

Using the maximum I-cache refill penalty gives a safe, up-
per bound while keeping the complexity low. This may
be somewhat pessimistic: it may happen that not all of the
loaded blocks are going to be used before the next preemp-
tion. Nevertheless, getting a more precise value in advance
will involve complex analyses, since it depends on the num-
ber of blocks effectively loaded and the exact preemption
instants.

Equation 9 is a recursive equation that is solved itera-
tively; the resulting WCRT,Ri, is then compared toτi’s
deadline to decide schedulability.

4 Assessing the proposed memory hierarchy

The proposed architecture, when operating in Virtual
Locking I-cache mode, is able to guarantee determinism per
se (since it is possible to analyse its impact on the WCRT
of every task), but system performance strongly depends on
the blocks selected to be loaded in the I-cache. Thus, this
selection must be carefully accomplished. In fixed-priority
preemptive multitasking systems, tasks response times de-
pend on the execution time of higher priority tasks. In ad-
dition, indirect interference causes that the response time
of tasks depends on the time needed to reload the I-cache
contents. Therefore, I-cache contents must be selected con-
sidering not the isolated tasks, but all of the tasks in the task
set.

Then, the goal is to optimise some temporal metric by
selecting a subset of instruction blocks,SBTS from the set
of instruction blocks,BTS . Choosing the cache contents in
a way that maximises the probability of finding the instruc-
tions in cache is a combinatorial problem. In general, the
techniques employed to solve combinatorial problems are
characterised by looking for a solution from among many
potential solutions. Petrank and Rawitz [16] showed that
unlessP = NP there is no efficient optimised algorithm
for data placement or code rearrangement that minimises
the number of cache misses. Furthermore, it is not even pos-
sible to get close. Therefore, they conclude that the problem
pertains to the class of extremely inapproximable optimi-
sation problems and that, consequently, on one hand, it is
necessary to use heuristics to tackle the problem, and on the
other hand, it is not possible to estimate the potential bene-
fits of an algorithm to reduce cache misses. So, the virtues
of a given algorithm must be evaluated by comparing algo-
rithms.

Hence, rather than trying to find only the best (optimal)
solution, a good non-optimal (trade-off) solution is sought.
Therefore, to solve the problem at hand, it may be a good
idea to apply some form of directed search. For this kind
of problem, one of the most appealing techniques is using
genetic algorithms since they are generally seen as optimi-
sation methods for non-linear functions.

In fact, in [8] a Genetic Algorithm, GA, has been pro-
posed to solve an equivalent problem. The results presented
there show that the use of a genetic algorithm to solve the
problem represents a good choice since it provides for each
task in the task set, not just the subset of blocks to be loaded,
an estimation of the WCET and, the corresponding WCRT
considering the estimated WCET, but also because that se-
lection offers good performance. Moreover, results in [9]
show that using the genetic algorithm proposed in [8] brings
slightly better results than using the pragmatic algorithms
given in [18].

In this work, for evaluation purposes, the following
cache characteristics are assumed: A direct-mapped I-cache
with varying size, a cache line size of 16 bytes (4 32-bit
wide instructions); I-buffer is also 16 bytes wide. Fetching
an instruction from I-cache or I-buffer takes 1 cycle while
fetching an instruction from IM takes 10 cycles. A fixed-
priority preemptive scheduler is used in every case. Task
priority is assigned according to a Rate Monotonic Policy.
Also, notice that in this work, it is assumed that the dead-
line, D, is equal to the task period,T .

Evaluation results concerning the proposed memory hi-
erarchy must show whether the proposed memory architec-
ture is predictable and if there is any performance loss when
using the proposed memory hierarchy (LSM) in front of
using a locking I-cache in a dynamic manner (dLC). There-
fore, two kinds of results were evaluated to assess the merits
of the proposed memory hierarchy. The first set of results is
obtained by using a GA to select blocks and estimate pro-
cessor utilisation when using those selected blocks with the
proposed memory hierarchy (ULSMe). The second set of
results is obtained by using the same selected blocks and a
modified version of SPIM (the freely available, widely used
MIPS simulator) which embodies a cache simulator, to ex-
ecute one hyperperiod of the task set and thus obtain the
simulated processor utilisation (ULSMs).

It is not easy to compare the performance of a real-time
system running on different architectures. If the same task
set is schedulable in every case, there are many character-
istics and metrics useful to compare performance. Further-
more, it is highly desirable to use standard benchmark(s) to
evaluate the predictability and performance of the proposed
memory hierarchy since it makes possible the comparison
with other approaches.

Traditional computing benchmarks are inadequate for
characterising real-time systems since they are not de-

81

Table 1. Main characteristics of task sets and
cache sizes

Feature Minimum Maximum
Number of tasks 3 8
Task Size 1.6 KB 27.6 KB
Task Set Size 12.5 KB 57.6 KB
Instr. executed per task (approx.) 50,000 8,000,000
Instr. executed per tasks (approx.) 200,000 10,000,000
Cache Size 1 KB 32 KB

signed to exhibit behaviour characteristic of such systems,
such as periodic, transient and transient periodic activa-
tion/deactivation. On the other hand, there are several pro-
posals for embedded/real-time systems benchmarking. Un-
fortunately, however, the lack of consensus about using a
standard benchmark (to the authors’ best knowledge) pre-
cludes the use of such proposals given that, in general, they
are not easily portable. Moreover, it is necessary to notice
that the proposed benchmarks are not targeted to measure
cache memory effects in real-time systems since they do
not cause preemptions[20].

The 26 tasks sets used in this work come from [10]. The
code for each task is synthetic; it does nothing useful but it
has a mix of instructions such that it is easy to automatically
generate different programs, which is adequate for the pur-
pose: each task may have streamlined code, single loops,
up to three nested loops, if-then-else constructs.

Table 1 summarises some characteristics of the task sets
and cache sizes employed for evaluation purposes.

4.1 Predictability analysis

To verify how predictable the proposed memory hierar-
chy is, the GA estimated response time of every task in the
task set,RLSMe, was compared with the corresponding re-
sponse time obtained through the simulationRLSMs.

However, instead of using the individual response times
for each task,τi, in every task set, Processor Utilisation, a
measure that involves the whole TS will be used to illustrate
the results in a more compact way:

U =

tasks∑
i=1

C′′
i

Ti

(11)

whereC′′
i

, the computation time ofτi includes all cache ef-
fects (intrinsic and extrinsic interference); i.e., it includes
the time required forτi to reload the cache after preemp-
tions:

C′′
i = Ri −

∑
∀ τj ∈hp(τi)

⌈
Ri

Tj

⌉
× C′

j (12)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
um

ul
at

iv
e

F
re

qu
en

cy

Overestimation in Predictability

40
%

30
%

20
%

10
%

 9
%

 8
%

 7
%

 6
%

 5
%

 4
%

 3
%

 2
%

 1
%

 0
%

6.8%

25.3%

dLC
LSM

Figure 3. Cumulative frequency curves for the
overestimation in predictability

whereRi is the WCRT forτi. SinceRi includes not just
the CRPD but also the execution time of those tasks with a
higher priority thanτi, it is necessary to deduct the execu-
tion time for those tasks.

Then, given the proposed memory hierarchy, the utili-
sation estimated by the GA (ULSMe), and the utilisation
obtained through the simulation (ULSMs), the overestima-
tion in predictability,Ω, is given byΩ = ULSMe/ULSMs.
Figure 3 presents the cumulative frequencies for the over-
estimation when using the proposed memory hierarchy and
the dynamic use of locking cache. Cumulative frequencies
represent the number of responses in the data set falling into
that class or a lower class [11].

The results verify that the proposed memory hierarchy is
predictable:

• For every task in the whole set of tasks (676), the es-
timated response time is always larger than the simu-
lated one (RLSMe > RLSMs).

• In the same vein, for every task set, the estimated util-
isation is always larger than the one obtained through
the simulation (ULSMe > ULSMs);

• Furthermore, as can be seen in Figure 3, the proposed
memory hierarchy (LSM) provides better predictabil-
ity than that obtained with the dynamic use of locking
cache (dLC). It can be observed that when using the
proposed memory hierarchy, the overestimation in util-
isation is greater than or equal to 5% in less than 7%
of the cases. On the other hand, when employing the
locking cache in a dynamic way, the overestimation in
utilisation is greater than or equal to 5% in around 25%
of the cases.

82

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
um

ul
at

iv
e

F
re

qu
en

cy

Utilisation Ratio

(0
.0

-0
.1

)

[0
.1

-0
.2

)

[0
.2

-0
.3

)

[0
.3

-0
.4

)

[0
.4

-0
.5

)

[0
.5

-0
.6

)

[0
.6

-0
.7

)

[0
.7

-0
.8

)

[0
.8

-0
.9

)

[0
.9

-1
.0

)

[1
.0

-1
.1

)

[1
.1

-1
.2

)

[1
.2

-1
.3

)

[1
.3

-1
.4

)

[1
.4

-1
.5

)

[1
.5

-∞
)

33.33%

∆sLC
∆dLC
∆LSM

Figure 4. Cumulative frequency curves for the
utilisation ratios

4.2 Performance evaluation

Although the effects of using the proposed memory hi-
erarchy can be safely incorporated into the schedulability
analysis, the performance advantages obtained from using
the proposed memory hierarchy should be analysed.

Since a higher cache hit ratio does not necessarily guar-
antees that every task in the task set will satisfy its deadline,
the approach used in this work to measure the quality of the
solution is to use Processor Utilisation. The lower the pro-
cessor utilisation, the better, since this means that the task
set demands less CPU time and thus other tasks might be in-
cluded in the task set while the system remains schedulable
(i.e., all tasks executing on time).

Estimated Processor Utilisations for the system with an
LSM (ULSMe), the system with an LC used in a static man-
ner (UsLCe), and the system with an LC used in a dynamic
manner (UdLCe), were calculated by using the same GA for
block selection and the appropriate I-cache refill penalty.

Afterwards, the different utilisations were normalised
against the utilisation obtained when simulating the system
with a conventional cache,UCs, to obtain the Utilisation
Ratios (∆UX = UXe/UCs, whereX is one ofLSM , dLC ,
sLC).

Figure 4 shows that:

• In less than 34% of the cases,∆ULSM > 1; i.e.,
ULSMe > UCs, and hence, the proposed memory hi-
erarchy brings about the same or better processor util-
isation than that obtained when using a conventional
cache in around 66% of the cases;

• In every range,∆ULSM < ∆UdLC < ∆UsLC and
hence, the proposed memory hierarchy brings better
processor utilisation than using a locking cache in a

dynamic manner; moreover, in the zone with losses
(range[0, 1.0)), the proposed memory hierarchy pro-
vides lower losses and in the zone with gains (range
(1.0,∞)), the proposed memory hierarchy provides
higher gains.

Furthermore, a statistical analysis of three null hypothe-
sis tests (t-test, sign test, and signed rank test) was done to
corroborate that∆ULSM − ∆UdLC < 0 (i.e., that the pro-
posed memory hierarchy provides a better Processor Utili-
sation than the dynamic use of locking cache). The first one
establishes whether the mean is zero or not; the remaining
two tests allow to determine whether the median is zero or
not. The sign test is based on counting the number of val-
ues above and below the hypothesized median, while the
signed rank test is based on comparing the average ranks of
values above and below the hypothesized median. All of
the three tests revealed that∆ULSM < ∆UdLC at the 95%
confidence level.

5 Concluding remarks

By virtue of including the LSM, any I-cache is trans-
formed into a virtual locking I-cache, independently of its
size, associativity and block size, the three main organisa-
tion parameters in a cache memory. In addition, parameters
like I-cache replacement policy are irrelevant, provided that
the algorithm used to select I-cache contents guarantees that
there will be no conflict misses.

Results show that the proposed memory hierarchy is pre-
dictable and simple to analyse. Moreover, when compared
to dynamic use of locking cache, it offers (i) a lower over-
estimation in predictability; and (ii) a higher performance.
Finally, when compared to a conventional cache, in many
cases the proposed memory hierarchy performs better or
very close to it.

On the other hand, the proposed memory hierarchy does
not needs explicit management of the memory hierarchy
at run-time, while both scratchpad memories and lock-
ing cache memories, do. Moreover, the use of scratchpad
memories requires explicit modifications in the application
code’s control flow.

In short, the memory assist is versatile in its operational
aspects, yet it uses generic components; it does not cause
any extra overheads to the system; its impact on system
programming is negligible; and, it may be embedded in
System-on-a-Programmable-Chip designs targeted to cur-
rent FPGAs, while contributing in a significant way to de-
terminism and performance improvements with respect to
dynamic use of a locking I-cache.

All of these advantages are obtained at a fraction of
the cost of the original system, thus paving the way to
widespread use in realistic real-time systems.

83

References

[1] Alt M., Ferdinand C., Martin F., and Wilhelm R. Cache
behavior prediction by abstract interpretation.Lecture Notes
in Computer Science (LNCS), 1145, Sept. 1996.

[2] Arnaud A. and Puaut I. Dynamic instruction cache locking
in hard real-time Systems. InProc. of the 14th International
Conference onReal-Time and Network Systems (RTNS’06),
pages 179–188, May 2006.

[3] Jacob B. L. and Bhattacharyya S. S. Real-time memory
management: Compile-time techniques and run-time mech-
anisms that enable the use of caches in real-time systems.
Technical report, Institute for Advanced Computer Studies,
University of Maryland at College Park, USA, Sept. 2000.

[4] Jain P., Devadas S., Engels D. W., and Rudolph L. Software-
assisted cache replacement mechanisms for embedded sys-
tems. InProc. of the International Conference on Computer-
Aided Design (ICCAD), Nov. 2001.

[5] Kirk D. B. SMART (Strategic Memory Allocation for Real-
Time) cache design. InProc. of the 10th IEEE Real-Time
Systems Symposium, pages 229–237, Dec. 1989.

[6] Li Y.-T. S., Malik S., and Wolfe A. Cache modeling for
real-time software: Beyond direct mapped instruction cache.
In Proc. of the 17th IEEE Real-Time Systems Symposium
(RTSS’96), pages 254–263, Dec. 1996.

[7] Lundqvist T. and Stenstrom P. An integrated path and timing
analysis method based on cycle-level symbolic execution.
Real-Time Systems, 17(2–3):183–207, Nov. 1999.

[8] Martí Campoy A., Pérez Jiménez A., Perles Ivars A., and
Busquets Mataix J. V. Using genetic algorithms in content
selection for locking-caches. InProc. of the IASTED In-
ternational Symposia Applied Informatics, pages 271–276.
Acta Press, Feb. 2001.

[9] Martí Campoy A., Puaut I., Perles Ivars A., and Busquets
Mataix J. V. Cache contents selection for statically-locked
instruction caches: an algorithm comparison. InProc.
of the 17th Euromicro Conference on Real-Time Systems
(ECRTS’05), pages 49–56, July 2005.

[10] Martí Campoy A., Tamura E., Sáez S., Rodríguez F., and
Busquets-Mataix J. V. On using locking caches in embedded
real-time systems. InProc. of the 2nd International Con-
ference on Embedded Software and Systems (ICESS-2005).
Lecture Notes in Computer Science (LNCS) vol. 3820, pages
150–159, Dec. 2005.

[11] G. McPherson.Applying and Interpreting Statistics: A Com-
prehensive Guide. Springer Texts in Statistics. Springer-
Verlag New York, Inc., second edition, 2001.

[12] Mueller F. Compiler support for software-based cache par-
titioning. In LCTES’95: Proc. of the ACM SIGPLAN 1995
workshop on Languages, Compilers, & Tools for real-time
Systems, pages 125–133, June 1995.

[13] Mueller F. Timing analysis for instruction caches.Real-Time
Systems, 18(2):217–247, May 2000.

[14] Muller H., May D., Irwin J., and Page D. Novel caches
for predictable computing. Technical Report CSTR-98-
011, Department of Computer Science, University of Bris-
tol, Oct. 1998.

[15] D. Patterson and J. Hennessy.Computer Organization and
Design: The Hardware/Software Interface. The Morgan
Kaufmann Series in Computer Architecture and Design.
Morgan Kaufmann, third edition, 2 Aug. 2004.

[16] Petrank E. and Rawitz D. The hardness of cache con-
scious data placement. InProc. of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 101–112, 2002.

[17] Puaut I. WCET-centric software-controlled instruction
caches for hard real-time systems. InProc. of the 18th
Euromicro Conference on Real-Time Systems (ECRTS’06),
pages 217–226, July 2006.

[18] Puaut I. and Decotigny D. Low-complexity algorithms for
static cache locking in multitasking hard real-time systems.
In Proc. of the 23rd IEEE Real-Time Systems Symposium
(RTSS’02), pages 114–123, Dec. 2002.

[19] Sasinowski J. E. and Strosnider J. K. A dynamic-
programming algorithm for cache memory partitioning for
real-time systems. IEEE Transactions on Computers,
42(8):997–1001, Aug. 1993.

[20] Sebek F. Measuring cache related pre-emption delay on a
multiprocessor real-time system. InIEE/IEEE Workshop on
Real-Time Embedded Systems (RTES’01), Dec. 2001.

[21] Shaw A. Reasoning about time in higher-level language
software. IEEE Transactions on Software Engineering,
15(7):875–889, July 1989.

[22] Staschulat J., Schliecker S., and Ernst R. Scheduling anal-
ysis of real-time systems with precise modeling of cache
related preemption delay. InProc. of the 17th Euromicro
Conference on Real-Time Systems (ECRTS’05), pages 41–
48, July 2005.

[23] Tamura E., Rodríguez F., Busquets-Mataix J. V., and Martí
Campoy A. High performance memory architectures with
dynamic locking cache for real-time systems. InProc. of
the Work-In-Progress Session of the 16th Euromicro Con-
ference on Real-Time Systems (WIP ECRTS’04). TR-UNL-
CSE-2004-0010, Department of Computer Science and En-
gineering. University of Nebraska-Lincoln, pages 1–4, June
2004.

[24] Tan Y. and Mooney V. A prioritized cache for multi-tasking
real-time systems. InProc. of the 11th Workshop on Synthe-
sis And System Integration of Mixed Information technolo-
gies (SASIMI’03), pages 168–175, Apr. 2003.

[25] Vera X., Lisper B., and Xue J. Data cache locking for higher
program predictability. InProc. of the 2003 ACM SIGMET-
RICS International Conference on Measurement and Mod-
eling of Computer Systems, pages 272–282, June 2003.

[26] Wehmeyer L. and Marwedel P. Influence of onchip scratch-
pad memories on WCET prediction. InProc. of the
4th International Workshop on Worst-Case Execution Time
(WCET) Analysis, pages 29–32, June 2004.

[27] Wehmeyer L. and Marwedel P. Influence of memory hi-
erarchies on predictability for time constrained embedded
software. InProc. of the Design, Automation and Test in
Europe Conference and Exhibition (DATE’05), pages 600–
605, Mar. 2005.

[28] Wolfe A. Software-based cache partitioning for real-time
applications. InProc. of the 3rd Workshop on Responsive
Computer Systems, Sept. 1993.

84

	actes.pdf
	header.pdf
	Binder4_num.pdf
	Binder3.pdf
	Binder2.pdf
	Binder3.pdf
	Binder1.pdf
	Formal-0.pdf
	Formal-1.pdf
	Formal-2.pdf
	Formal-3.pdf
	Archi-0.pdf
	Archi-1.pdf
	Blank.pdf

	Archi-2.pdf
	Archi-3.pdf
	Archi-4.pdf
	Archi-5.pdf
	SchedulingA-0.pdf
	SchedulingA-1.pdf
	Blank.pdf

	SchedulingA-2.pdf
	Blank.pdf
	SchedulingA-3.pdf
	SchedulingA-4.pdf
	SchedulingB-0.pdf

	SchedulingB-1.pdf
	Blank.pdf
	SchedulingB-2.pdf
	SchedulingB-3.pdf
	Introduction
	Simulator and system model
	Data and transactions
	Transactions system priorities (SPriority)
	Transaction scheduler (TS)
	GEDF Scheduling policy
	GEDF contributions

	Conflicts level
	System performance metrics
	Transaction success ratio (SRatio)
	System Quality of Service (QoS)

	General mechanism of the simulator

	Simulations and results
	Simuations parameters
	Influence of the scheduling policy
	System Quality of Service (QoS)
	GEDF flexibility according to the system workload

	Conclusion

	SchedulingAndControl-0.pdf
	SchedulingAndControl-1.pdf
	SchedulingAndControl-2.pdf
	SchedulingAndControl-3.pdf

	Blank.pdf
	Distributed-0.pdf
	Distributed-1.pdf
	Distributed-2.pdf
	1 Introduction
	2 Preliminaries and the Main idea
	2.1 Network and Message Model
	2.2 Impossibility
	2.3 The Main Idea
	3 Sporadic Message Streams
	4 Implementation and Experiments
	4.1 Implementation and Experimental Setup
	4.2 Support of Hypotheses

	5 Discussion and Previous Work
	6 Conclusions
	Acknowledgements

	Distributed-3.pdf
	Distributed-4.pdf

	tail.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

