

Abstract-- In multitask, preemptive real-time systems, use of
cache memories make difficult the estimation of the response
time of tasks, due to the dynamic, adaptive and non-predictable
behavior of cache memories. But embedded and critical
applications need the increase of performance provided by cache
memories.

This work presents a comprehensive method to use locking
caches is these scenarios. Locking cache mechanisms allows to
load and lock the content of the cache to ensure it will remain
unchanged during execution. By ensuring this, the cache is totally
predictable, thus conventional algorithms can be used to
accomplish the schedulability analysis. In addition, a predictable
cache allows a more accurate estimation of response time of
tasks.

Nowadays, locking cache scheme is present is several
commercial processors, and only minor hardware modifications
would be necessary in order to obtain the best performance. To
select the contents to be preloaded in cache, a genetic algorithm
is developed. This algorithm selects the set of instructions to be
locked in cache that give the better performance, and
simultaneously estimate a tight upperbound of the response time
of tasks, making simultaneously the schedulability analysis.
Experimental results show that in a variety of scenarios, this
method obtains better performance than non-locking caches in
addition to simplify the analysis.

I. INTRODUCTION

ACHE memories help to increase system performance,
but its unpredictable behavior raises two problems in

real-time systems:
- It is difficult to obtain the Worst Case Execution Time

(WCET) of a task. A task may remove its own instructions
from cache (intrinsic interference). The execution time of one
instruction depends on the cache contents.

- It is hard to obtain the response time of a task. In a
preemptive multitasking environment, when a task resumes
execution, the cache contents may be different, varying its
execution time (extrinsic interference). The schedulability
analysis must consider this effect when calculating the
response time of any task in a system.

This work presents a technique based on locking cache to
reduce the unpredictability of the cache. This enables the use
of simple and well-known algorithms to make the
schedulability analysis, in contrast to the complex analysis
techniques presented in [1-5]. Compared to other works to
improve cache determinism [6,7], the use of locking cache
deals together with both problems: intrinsic and extrinsic

Authors belongs to the Department of Computer Engineerig, Technical
University of Valencia, Spain. (e-mail: {amarti, aperles, vbusque}@
disca.upv.es).

interference, and not only one of them.
Even though our technique is focused on determinism and

worst case scenarios, we have also obtained good average case
performance trough carefully selection of the cache contents.

II. CACHE MODEL

Contemporary processors usually implement a locking
cache scheme. In particular, our technique requires the
following characteristics:

Cache can be totally locked or unlocked. When cache is
locked, there are no new tag allocations.

If the processor addresses an instruction that is in the
locked cache, this instruction is served from cache.

The processor may use an instruction buffer to take
advantage of spatial locality even if the block is not in cache.

Cache can be loaded using a cache-fill instruction, selecting
the memory block to be loaded.

Cache must be fully associative, at least in locking mode
operation.

During system start-up, a small routine (basically a loop
executing cache fill instruction) is executed to preload the
cache. Once the cache is full, it is locked. Preloaded
instructions can belong to any task of the system, and may be
either large consecutive instruction sequences or small,
individual separate blocks. When the system begins its full-
operational execution, the instruction cache is loaded with a
well-know set of instructions, and its contents will never
change, eliminating both intrinsic and extrinsic interferences.

III. SYSTEM ANALYSIS

A. Schedulability analysis

We propose the Cached Response Time Analysis (CRTA)
presented in [8]. CRTA uses recursively the following
formula to obtain the response time of any task:

)(
)(

1
missj

ihpj j

n
i

ii
n
i TCx

T

w
BCw +












++= ∑

∈

+
(1)

where Wi is the response time of task τi, Ci is the WCET of
τi considering the effect of cache memory, Bi represents the
time task τi is blocked, Tj is the period of task τj, hp(i) is the
set of tasks with higher priority than task τi. Finally, the
cache-related preemption delay (Tmiss) is easily calculated
since the cache contents are unchanged during execution.

Using locking caches in preemptive real-time
systems

A. Marti Campoy, A. Perles Ivars, J. V. Busquets Mataix

C

a a
Proceedings of the 12th IEEE Real Time Congress on Nuclear And Plasma Sciencies. pp. 157-159. Valencia June 2001

B. Worse Case Execution Time (WCET)

If order to obtain the WCET we use an extension of the
path analysis using the cache-control flow graph [9]. It is
practical since there are no changes in cache contents during
task execution. The execution time of an instruction is:

-For a vertex Vi belonging a block loaded and locked in
cache, its execution time Ei is: Ei = Thit * I i

-For a vertex Vi belonging a block not loaded nor locked in
cache, its execution time Ei is: Ei=Tmiss+(Thit*I i)

where Tmiss is the time of execution from main memory, Thit

is the time of execution from cache memory and Ii is the
number of instructions of vertex Vi. Fig. 1 shows an example
of building the c-cfg and the expression to calculate the
WCET.

Cache line size: 4 instructions
V: Number of Vertex.
N: Number of Block.

Branch: Conditional Branch
Jump: Inconditional Branch
Seq: No Branch Instruction

Seq

Jump

Branch

V 1
N 1

V 5
N 3

V 4
N 2

V 3
N 2

M
em

or
y

B
lo

ck
 1

M
em

or
y

B
lo

ck
 2

M
em

or
y

B
lo

ck
 3

V 6
N 4

M
em

or
y

B
lo

ck
 4

Seq

Seq
Seq
Seq

Seq
Seq

Seq
Branch

Seq
Seq

Seq
Seq
Seq

V 2
N 1

Wcet=n*(E1+MAX(E2+E3,E4)+E5)+E6

Fig. 1. Exemple of cache-control flow graph and WCET caluclation.

IV. CACHE CONTENTS SELECTION

Randomly locking instruction offers predictability but not
guarantee good response time of tasks. Instructions to be
loaded must be carefully selected, looking for the best
scenario. This scenario is a set of memory blocks that provides
the shortest execution times, thus providing the best response
time of tasks to obtain schedulability.

Direct selection of instruction is not possible because
several factors are involved in the execution time in multitask,
preemptive system, including interactions between tasks.

Exhaustive search, including branch and bound, presents an
intractable computational cost, since the number of possible
solutions is very large.

Genetic algorithms [10], performing a randomly-directed
search, are appropriate to solve the problem. The developed
algorithm returns the list of memory blocks to be loaded and
locked in cache, providing a sub-optimal solution. The
algorithm models a possible solution (a set of main-memory
blocks locked in cache) called individual. A set of individuals
is evaluated, calculating the system average response time
using the CRTA previously presented. The best individuals
are selected, combining them in new individuals. The process
is repeated a given number of times.

The algorithm gives both the list of blocks to load and lock,
and the schedulability analysis of the system.

V. EXPERIMENTAL RESULTS

Experiments are carried out using the SPIM simulator to
simulate the execution of several task sets using seven cache
sizes (from 1KB to 64KB) and five map-function (direct, 2-
way, 4 way, full associative and locking cache). Moreover, the
genetic algorithm estimates the response time of tasks and
produces the list of blocks (which is used for simulation). For
the experiments, Tmiss is 10 units and Thit is 1 unit.

Fig. 2 shows the variation of the response time either
estimated (by analysis) or simulated using a locking cache.
Each bar means the number of experiments that exhibits the
variation printed in the x-axis.

Fig. 3 shows the variation of the mean response time either
using a standard cache or a locking one. The figure shows the
distribution of the variation depending on the cache size. The
lines represent the mean and median.

0

26

3
5 4 3

6 6

10

6 6

17

0
0

5

10

15

20

25

30

<=
 0

,9

0,
99

99

0,
99

99
1

0,
99

99
2

0,
99

99
3

0,
99

99
4

0,
99

99
5

0,
99

99
6

0,
99

99
7

0,
99

99
8

0,
99

99
9 1 >1

Variation %

N
um

be
r

of
 ta

sk
s

Fig. 2. Number of experiments grouped by the variation between estimated
versus simulated response time.

0

0,5

1

1,5

2

2,5

3

3,5

4

1 KB 2 KB 4 KB 8 KB 16 Kb 32 KB 64 KB
Cache size

G
ai

n

Mean
Median

Fig. 3. Variation between the best mean response time using standard
cache versus the estimated response time using locking. It is shown the
median and mean.

VI. CONCLUSIONS

This work presents a novel technique to exploit the use of
locking caches in preemptive real-time systems. The hardware
required is nowadays present in some off-the-shelf processors,

and only minor modifications to the tools are needed to obtain
good results.

The main advantage of the technique is that the cache gets
predictability, allowing an easy and fast schedulability
analysis by well-known algorithms.

Experimental results show that the estimated response time
is a very tight upperbound of actual system response time.
Also, in some cases, determinism is reached without loss of
performance.

REFERENCES

[1] F. Mueller and J. Wegener. “A Comparison of Static Analysis and
Evolutionary Testing for the Verification of Timing Constraints.”
Proceedings of Fourth IEEE Real-Time Technology and Applications
Symposium, Denver, Colorado, USA June 3-5, 1998.

[2] Y. S. Li, S. Malik, and A. Wolfe. “Cache Modeling for Real-Time
Software: Beyond Direct Mapped Instruction Caches.” Proceedings of
the Seventeenth IEEE Real-Time Systems Symposium, December 1996.

[3] S. S. Lim, Y. H. Bae, G. T. Jang, B. D. Rhee, S. L. Min, C. Y. Park, H.
Shin, K. Park, and C. S. Kim. “An Accurate Worst Case Timing
Analysis Technique for RISC Processors.” Proceedings of the Fifteenth
IEEE Real-Time Systems Symposium,pp.97-108, December 1994.

[4] S. Basumallick and K. D. Nilsen. “Cache Issues in Real-Time Systems.”
ACM SIGPLAN Workshop on Language, Compiler, and Tool Support
for Real-Time Systems, June 1994.

[5] C. Lee, J. Hahn, Y. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee,
C. S. Kim. “Enhaced Analysis of Cache-related Preemption Delay in
Fixed-Priority Preemptive Scheduling.” Proceedings of the 18th IEEE
Real-Time Systems Symposium, December 1997.

[6] D. B. Kirk. “SMART (Strategic Memory Allocation for Real-Time)
Cache Design.” Proceedings of the 10th IEEE Real-Time Systems
Symposium, pages 229-237, December 1989.

[7] J.V. Busquets-Mataix, J.J. Serrano, A.J. Wellings. “Hybrid Instruction
Cache Partitioning for Preemptive Real-Time Systems.” 9th Euromicro
Workshop on Real-Time Systems, 271-276, Toledo, Spain, June 1997.

[8] J. V. Busquets-Mataix, A. J. Wellings, J.J. Serrano, R. Ors and P. Gil.
“Adding Instruction Cache Effect to an Exact Schedulability Analysis of
Preemptive Real-Time Systems.” 8th Euromicro Workshop on Real-
Time Systems, pages 8-15, L'Aquila, Italy, June 1996.

[9] A. Martí, X. Molero, A. Perles, F. Rodriguéz, J.V. Busquets. “Combined
Intrinsic-Extrinsic Cache Analysis for Preemptive Real-Time Systems.”
Real-Time Programming 2000. 25th IFAC Workshop on Real Time
Programming. Ed. Pergamon, 2000

[10] A. Martí, A. Pérez, A. Perles, J.V. Busquets. “Using Genetics
Algorithms in Content Selection for Locking- Caches.” IAESTED
International Conference on Applied Informatics. Acta Press. Innsbruck,
Austria, 2001

