
A Comparison of Three Genetic Algorithms for Locking-Cache
Contents Selection in Real-Time Systems

E. Tamura1, J.V. Busquets-Mataix2, J. J. Serrano Martín2, A. Martí Campoy2
1Grupo de Automática y Robótica, Pontificia Universidad Javeriana - Cali, Colombia.

2Departamento de Informática de Sistemas y Computadores∗,
Universidad Politécnica de Valencia, Spain

E-mail: eutamo@doctor.upv.es, {vbusque, jserrano, amarti}@disca.upv.es

Abstract
Locking caches, providing full determinism and good per-

formance, are a very interesting solution to replacing conven-
tional caches in real-time systems. In such systems, tempo-
ral correctness must be guaranteed. The use of predictable
components, like locking caches, helps the system designer to
determine if all the tasks will meet its deadlines. However,
when locking caches are used in a static manner, the system
performance depends on the instructions loaded and locked
in cache. The selection of these instructions may be accom-
plished through a genetic algorithm.

This paper shows the impact of the fitness function in the
final performance provided by the real-time system. Three fit-
ness functions have been evaluated, showing differences in the
utilisation and performance obtained.

1 Introduction
To cope with the processing power demanded by to-

day complex engineering systems, real-time system de-
signers are resorting to high-performance contemporary
processors. These processors are designed with a ma-
jor goal: to provide good average execution times over a
great variety of computing needs. Unfortunately, in real-
time systems, what the designer needs is to guarantee
that the tasks must execute on time even under adverse
circumstances. To do so, it is necessary to estimate the
worst-case response time of every task in the system.

Given the speed disparity between the memory system
and contemporary processors, computer architects intro-
duce a cache memory in between. However, cache op-
eration makes hard to predict the execution times since
cache contents change dynamically, adapting to the exe-
cution path in each moment. Furthermore, during its ex-
ecution, the tasks working sets interferes with each other.
Therefore, to ease the analysis, it is feasible to lock the
contents of the cache memory with some predetermined
instructions such that the system provides not just better

∗This work has been supported in part by the SpanishComisión
Interministerial de Ciencia y Tecnologíaunder project CICYT-
TIC2003-08106-C02-01

performance but also predictability as shown in ref. 1
and ref. 2. The problem is that, as it is proved in ref.
3, determining an optimal placement of cache contents
by trying to maximise the number of times that the refer-
enced datum is in the cache memory is NP-hard. Hence,
it may be a good idea to apply some heuristics. Previ-
ous works published in ref. 4 show that using a genetic
algorithm represents a good solution for this particular
problem.

However, performance of locking cache is highly de-
pendant on the genetic algorithm characteristics. In ad-
dition, performance of real-time systems must be quan-
tified with several metrics: system utilisation, task slack
(distance from end of task execution to its deadline), or
average task slacks in the system.

This paper explores three different fitness functions,
and evaluates the performance they provide in terms of
system utilisation and slack time, two metrics commonly
used in evaluating real-time systems. The results will
illustrate which is the most adequate fitness function to
get the best value for each metric.

The remainder of the paper is organised as follows.
Section 2 introduces the genetic algorithm and its three
fitness functions. Section 3 illustrates the experimental
procedure. Finally, in Section 4 some conclusions and
future work are summarised.

2 Genetic Algorithm

2.1 Representation

Each individual is modelled as a binary vector of di-
mensionn, wheren is the number of memory blocks
occupied by all of the tasks. If a bit is set to one, the
associated memory block is to be loaded and locked in
the cache memory.

2.2 Fitness functions

The first fitness function will attempt to allocate more
blocks for those real-time tasks with lower priorities, try-

A
Adaptive and Natural Computing Algorithms, Proceedings of the 7th International Conference. Pages 462-465. Coimbra, Portugal, March 2005



ing to compensate the time lost due to the execution of
higher priority real-time tasks. Equation 1 shows the re-
sulting fitness function:

fA =

R1 +
N∑

i=2

2i−2Ri

2N−1
(1)

whereN is the number of tasks in the system,Ri is the
response time of each task,τi, computed using CRTA as
given in ref. 5.

The second fitness function will try to provide a lower
processor utilisation at the system level.

fB =
N∑

i=1

C ′i
Ti

(2)

whereC ′i, the computation time ofτi includes all cache
effects.

The third fitness function tries to improve the average
slack time at the system level.

fC =

N∑

i=1

Si

N
(3)

with

Si = 1− Ri

Di
(4)

whereRi andDi are respectively the response time and
deadline ofτi.

2.3 Selection Criteria

Given any of the previous fitness function there are
two possible outcomes:

• The number of locked blocks required by the task
set is less than or equal to the cache memory size.
This is a valid individual.

• The number of locked blocks required by the task
set is greater than the cache memory size. This is a
non-valid individual, since even though the system
may provide acceptable response times, it does not
satisfy the intended requirements.

A rank-based selection is used, in which the individ-
uals are sorted according to two basic rules. If the indi-
vidual is valid, it is ranked according to its fitness value.
If the individual is not valid, it is ranked according to the
number of blocks used; the lesser the number of blocks,
the better the individual.

2.4 Crossover and Mutation

For crossover, two individuals are randomly selected
from the previous ranking. Both individuals are di-
vided in two ends, randomly selecting the splitting point.
Then, by exchanging the two portions to the right of the
cut-off point, two new individuals are created. Once the
crossover is done, the resulting new individuals may use
more cache lines than the cache memory has available.
However, to make a broader exploration of the search
space, those individuals are not discarded. Therefore,
mutation is applied by following one of three schemas:

• For individuals with a number of locked blocks
greater than cache size, the mutation procedure se-
lects at random a set of locked blocks and marks
them as unlocked, reducing the number of locked
blocks. The resulting individual may have a num-
ber of locked blocks that are greater, equal or
lower than the cache size.

• For individuals with a number of locked blocks
lower than cache size, mutation randomly selects
a set of unlocked blocks and mark them as locked,
increasing the number of locked blocks. The re-
sulting individual may have a number of locked
blocks greater, equal or lower than the cache size.

• For individuals with a number of locked blocks
equal than cache size, mutation randomly selects
a set of pairs, each pair with one locked block and
one unlocked block, and exchanges them, leaving
unchanged the number of locked blocks.

This policy allows the existence of non-valid individ-
ual, but also helps to keep its number low.

2.5 Initial population and tuning parameters

Although a genetic algorithm can explore all the
search space through crossover and mutation, selecting
adequately the initial population may help the algorithm
to find a sub-optimal solution with a lower number of
iterations. Due to the structure of the tasks, the ideal so-
lution is an individual with a number of 1’s equal to the
cache size; hence, the best solution includes a large se-
quence of consecutive 1’s. The population is initialised
with sequences of 1’s, randomly selecting the beginning.

Other parameter settings are: Population size: 200;
Number of generations: 5000; Probability of crossover:
0.6; Probability of mutation for individual with number
of locked blocks equal to cache size: 0.01; Probability
of mutation for individual with number of locked blocks
distinct to cache size: 0.001; Probability of selection of
the highest ranked individual: 0.1. The parameter set-
tings are based on results of several preliminary runs.



They are comparable to the typical values mentioned in
ref. 6.

3 Experimental Procedure

There were 26 different setups, each with 3 to 8 tasks.
The code for each task is synthetic; it does nothing use-
ful but it has a mix of instructions such that it is easy to
generate different programs, which is adequate for the
purpose. Each experiment was tested using seven differ-
ent cache memories ranging from 64 lines to 4096 lines,
for 182 experiments comprising 770 tasks. In some of
the experiments, the footprint (the amount of memory
required) of the task set was smaller than the cache size,
which means that they will run as fast as possible, since
there will be no interference at all. Because of this, they
were discarded; the final number of valid experiments is
146 and the number of tasks is 610.

For each of the 146 experiments, three runs of the ge-
netic algorithm -one run for each fitness function- were
accomplished. For each run, the overall system utilisa-
tion, the per-task slack times, and, finally, the overall
slack time, were estimated.

3.1 Overall System Utilisation

Let N be the number of tasks in the system, the com-
putation time,C ′i, of each task,τi, is calculated using
CRTA. Assuming that taskτi has higher priority than
taskτj wheneveri < j, the calculation of the computa-
tion times, are given by:

C ′1 = R1 (5)

C ′i = Ri −
∑

∀ 0<j<i

C ′j

⌈
Ri

Tj

⌉
,∀ i | 1 < i ≤ N(6)

which takes into account the execution times of those
tasks whose priority is higher than the priority of the cur-
rent task.

The system utilisation,Ul, is then given by:

Ul =
N∑

i=1

C ′i
Ti

(7)

3.2 Slack Time

Let N be the number of tasks in the system, the per
task slack time,Si, is given by:

Si = 1− Ri

Di
(8)

whereDi is the deadline of taskτi.

Then, the system average slack time is calculated by
means of:

Savg =
1
N

N∑

i=1

Si (9)

3.3 Statistical Analysis

With just the bare results attained in the experiments it
is not possible to declare, which fitness function is better,
so statistical analyses will be used. First, a comparison
of the statistical summaries is done; this is followed by a
paired-sample analysis, a procedure designed to test for
significant differences between two data samples where
the data is collected as pairs. Several statistical values
have been used to determine if there exist differences
between samples. In addition, three null hypothesis tests
have been done for each comparison. These are t-test,
sign test, and signed rank test.

3.3.1 Analysis of System Utilisation: Figure
1 shows a comparison of the average, median, lower and
upper quartile for the utilisation obtained from each fit-
ness function. It can be observed that functionfA pro-
vides the largest (the worst) utilisation, while functions
fB andfC offers similar results. In order to determine if
there are significant differences between the utilisation
provided byfB and fC , a paired-sample analysis has
been performed. The analysis shows that the difference
betweenfB andfC is small but statistically significant,
giving lower utilisation (better performance) for the re-
sults obtained when using the fitness functionfB .

Fig. 1. Utilisation from each fitness function

3.3.2 Overall Slack Time: From Figure 2 it
can be clearly recognised thanfC offers a large (better)
average slack thanfA andfB . Regarding the compari-
son betweenfA andfB , Figure 2 presents contradictory



results. Besides that, the paired-sample analysis for the
data coming fromfA and fB does not help to decide
which of the two fitness functions provides better aver-
age slack. Albeit, it may be reasonable to say that both
fA andfB provide the same average slack.

Fig. 2. Average slack from each fitness function

4 Conclusions and Future Work

This paper showed the impact of three different fitness
functions over the results provided by a genetic algo-
rithm that selects the contents of a locking cache mem-
ory, which is used in a static way in a real-time system.
The first fitness function,fA, tries to minimise the aver-
age response time of the tasks. The second one,fB , tries
to minimise the global system utilisation. Finally, the
third one,fC , tries to minimise the average slack time.

The evaluation is based upon two metrics: global sys-
tem utilisation,U , and Overall Average Slack Time,S.

• Fitness functionfB is statistically better thanfC

whenever it is required to optimise the overall util-
isation. Fitness functionfA presents worst utilisa-
tion than the other two functions.

• Regarding overall slack time, fitness functionfC

offers the better performance, while there is no dif-
ference betweenfB andfA.

From the results it can be seen that none of the fit-
ness functions perform well in the two basic metrics,
although fitness functionfC may be the best option to
get the optimal average slack and quasi-optimal utilisa-
tion. However, if the performance required for one of the
two metrics is a critical parameter, the system designer
should choose betweenfB andfC the one that it is more
appropriate to its particular optimisation interests. Table
1 gives the proposed selection criteria of fitness function.

Table 1.Function selection criteria versus optimising param-
eter

Rank Optimising Optimising
for utilisation for slack

First option fB fC

Second option fC fB or fA

First option fA fB or fA

The statistically significant but very small difference
betweenfB andfC concerning utilisation allows to ex-
pect that the combined use of the two fitness functions
in the same genetic algorithm, may bring a trade-off so-
lution for both metrics. Therefore, future work will in-
volve the development of a selection operator that con-
siders two or more metrics for different fitness functions
in order to sort the individuals.

References
[1] Martí, A., Perles, A., Busquets Mataix, J. V. (2001)

Static Use of Locking Caches in Multitask Preemptive
Real-Time Systems. In: Proceedings of the IEEE/IEE
Real-Time Embedded Systems Workshop (Satellite of
the 22nd IEEE Real-Time Systems Symposium), Lon-
don, UK.

[2] Martí, A., Perles, A., Busquets-Mataix, J.V. (2002) Dy-
namic Use Of Locking Caches In Multitask, Preemptive
Real-Time Systems. In: Proceedings of the 15th World
Congress of the International Federation of Automatic
Control, Elsevier Science, Barcelona, Spain.

[3] Petrank, E., Rawitz, D. (2002) The harness of cache con-
scious data placement. In: Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 101-102, Portland, U.S.A.

[4] Martí Campoy, A., Pérez Jiménez, A., Perles Ivars, A.,
Busquets Mataix, J.V. (2001) Using Genetic Algorithms
in Content Selection for Locking-Caches. In: Proceed-
ings of the IASTED International Symposia Applied In-
formatics. pp. 271-276. Acta Press. Innsbruck, Austria.

[5] Busquets-Mataix, J.V., Wellings, A.J., Serrano, J.J., Ors,
R., Gil, P. (1996) Adding Instruction Cache Effect to an
Exact Schedulability Analysis of Preemptive Real-Time
Systems. In: Proceedings of the 8th Euromicro Work-
shop on Real-Time Systems, pp. 8-15, L’Aquila, Italy.

[6] Mitchell, M. (1996) An Introduction to Genetic Algo-
rithms, MIT Press, Cambridge




