
Performance analysis of the static use of locking caches.
A. MARTÍ CAMPOY, A. PERLES, S. SÁEZ, J.V. BUSQUETS-MATAIX

Departamento de Informática de Sistemas y Computadores
Universidad Politécnica de Valencia

E-46022 Valencia
SPAIN

amarti@disca.upv.es http://www.upv.es

Abstract: The unpredictable behavior of conventional caches presents several problems when used in real-time
multitask systems. It is difficult to know its effects in the Worst Case Execution Time and it introduces
additional delays when different tasks compete for cache contents in multitask systems. This complexity in the
analysis may be reduced using alternative architectures to cache memories, that improves predictability but
obtaining similar performance. This is the case of locking caches, that may preload and lock cache contents,
precluding the replacement during system operation, thus making cache and system behavior more predictable
by means of simple, well-known and easy-to-use algorithms.
This work presents an analysis of worst-case performance obtained with the static use of locking caches versus
worst-case performance obtained with conventional (non-locking) caches. Analysis results show that
predictability can be reached with no loss of performance, and the scenarios where the locking cache provides
similar performance to conventional caches may be estimated from system parameters like task size, cache size,
level of locality and level of interference, without running any experiment.

Key-words: real-time systems, cache memories, locking cache, schedulability analysis, performance.

1 Introduction
Modern microprocessors include cache memories in
their memory hierarchy to increase system
performance. General-purpose systems benefit
directly from this architectural improvement, but hard
real-time systems need additional hardware resources
and/or system analysis to guarantee the time
correctness of the system's behavior when cache
memories are present. In multitask, preemptive real-
time systems, the use of cache memories presents two
problems. The first problem is to calculate the Worst
Case Execution Time (WCET) due to intra-task or
intrinsic interference. Intra-task interference occurs
when a task removes its own instructions from the
cache due to conflict and capacity misses. When
removed instructions are executed again, a cache
miss increases the execution time of the task. This
way, the delay caused by the cache memory
interference must be included in the WCET
calculation. The second problem is to calculate the
task response time due to inter-task or extrinsic
interference. Inter-task interference occurs in
preemptive multitask systems when a task displaces
the working set of any other task from the cache.
When the preempted task resumes execution, a burst
of cache misses increases its execution time. This
effect, called cache-refill penalty or cache-related
preemption delay must be considered in the
schedulability analysis, since it situates task
execution time over the precalculated WCET.

Several solutions have been proposed for the use
of cache memories in real-time systems. In [1,2,3]
cache behavior is analyzed to estimate task execution
time considering the intra-task interference. In [4,5]
cache behavior is analyzed to estimate task response
time considering the inter-task interference, using a
precalculated cached WCET. The main drawback of
these solutions is the complexity of the algorithm and
methods needed to accomplish the analysis. Also,
each method considers only one face of the problem,
the intra-task interference or the inter-task
interference, but not both. Alternative architectures to
conventional cache memories have been proposed, in
order to eliminate or reduce cache unpredictability,
making the sechedulability analysis easy. In [6,7,8]
hardware and software techniques are used to divide
the cache memory, dedicating one or more partitions
to each task, avoiding the inter-task interference. The
main drawback of these proposals is the no action
over the intra-task interference, leaving one side of
the problem unresolved. Also, in several cases the
inter-task interference is only reduced but not fully
eliminated, so the inter-task problem is also
unresolved.

The use of locking caches has been proposed in
[9,10] as an alternative to conventional caches
solving both intra-task and inter-task interference
analysis. The static use of locking caches fully
eliminates the intra-task interference, allowing the
use of simple algorithms in order to estimate the

a a
Proceedings of the 3rd WSEAS Int. Conference on Automation and Information. Tenerife, Spain December 2002.

WCET of tasks. Regarding the inter-task interference,
the static use of locking caches reduces the cache-
related-preemption delay to a very low and constant
time for all preemptions suffered by any task,
allowing the use of the well-known RTA analysis
with minor changes.

This work presents a statistical analysis of worst-
case performance offered by the static use of locking
caches versus worst-case performance offered by
conventional, dynamic and non-deterministic caches
(hereinafter, we will abbreviate "worst-case
performance" by "performance").

2 Overvi ew of the static use of locking
caches.
The locking cache is a direct mapped cache with no
replacement of contents when locked, joined with a
temporal buffer of one-line size. A fully locked cache
allows obtaining the maximum possible performance,
while making the cache deterministic. The temporal
buffer reduces access time to the memory blocks that
are not loaded in the cache, since only references to
the first instruction in the block produce cache miss.
During system start-up, a small routine is executed to
preload and lock the cache. Preloaded instructions
can belong to any task of the system, and may be
large consecutive instruction sequences or small,
individual separate blocks. When the system begins
its full-operational execution, the instruction cache is
loaded with a well-known set of instructions, and its
contents will never change, eliminating both intra-
task and inter-task interference.

In locking caches, an instruction will always or
never be in the cache. In this way, the execution time
of the instruction is always constant and a-priori
known. Thus, the WCET of a task running on a
locking cache can be estimated using the worst-path
analysis [11] applied to machine code, taking into
account the state, locked or not, of each instruction.
The worst path analysis is accomplished using an
extension of task's Control Flow Graph, called
Cached-Control Flow Graph (c-cfg) modeling not
only the task's paths but also how the cache is used.

Schedulability analysis is accomplished using
CRTA [5]. Equation (1) shows the expression of
CRTA, where Ci is the WCET of τi without
preemptions but considering locking-cache effects,
and γj is the increase in the response time that task τi

experiences due to task τj. But in locking caches,
inter-task interference doesn’t exist since the cache
contents remain unchanged during task switch, except
for a small extrinsic interference introduced by the
temporal buffer. This way, the value of γj is Tmiss, for
all preemptions, all tasks, where Tmiss is the time to

transfer a block from main memory to temporal
buffer.

Instructions to be loaded and locked in cache are
selected by a genetic algorithm [12] executed during
system design. Developed algorithm provides the set
of main memory blocks, and both estimation of the
WCET of each task and its Response Time when
system is executed in a locked cache with the selected
set of blocks loaded and locked. Further details can
be found in [9].

)(
)(

1
jj

ihpj j

n
i

i
n
i Cx

T
wCw γ+












+= ∑

∈

+ (1)

3 Experim ents
Experiments must provide two main results. First,
evaluate the accuracy in the estimation of response
time and second, show if predictability is reached
with or without loss of performance. More than 180
experiments, with a total of about 700 tasks have
been defined.

Each experiment is composed of a set of tasks and
a cache size. The tasks used in the experiments are
artificially created in order to stress the locking cache
and the genetic algorithm. The main parameters of
the experiments are described in Table 1. For each
system, two qualitative parameters are also defined:
• Interference: Relationship between periods, defined
at two levels: high level of interference and null level
of interference.
• Locality: Level of spatial and temporal locality.
The Level of locality may be divided into four
ranges: null, poor, good, and excellent. The tasks
used in the experiments vary between poor and good.

Minimum Maximum
Number of tasks 3 8
Size of task 2 KB 32 Kb
System size (sum of
tasks’ size)

8 Kb 60 Kb

Instructions executed
by task

50,000 8,000,000

Instructions executed
by system

200,000 10,000,000

Cache size 1Kb 64Kb
Cache line size 16 bytes 16 bytes
Execution time from
cache or temporal
buffer (Thit)

1 cycle 1 cycle

Time to transfer form
main memory (Tmiss)

10 cycles 10 cycles

Table 1 Main characteristics of the experiments

Three kinds of runs have been accomplished for
each experiment:

• Execution of genetic algorithms for each
experiment.
• Simulation of conventional caches, using direct-
mapped, two-way, four-way and full associative
cache with LRU replacement algorithm. The best
map-function is selected as performance value for
each experiment.
• Simulation of direct-mapped locking cache, loading
and locking selected blocks by the genetic algorithm.
Simulations for both locking and conventional caches
are accomplished using the SPIM tool [13], a MIPS
R2000 simulator.

Fig. 1 shows the accumulated frequency of
overestimation in the response time of each task
estimated by the genetic algorithm, with respect to
the actual (simulated) response time when a locking
cache is used. Y-axis value is the percentage of tasks
with an overestimation lower than x-axis value. This
figure confirm the accuracy of estimating the
response time, since more than 90% of tasks have an
overestimation below 0.05%, and the simulated
response time using a locking cache never exceeds
the estimated one.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10
,0

00
%

5,
00

0%

1,
00

0%

0,
50

0%

0,
10

0%

0,
05

0%

0,
01

0%

0,
00

9%

0,
00

8%

0,
00

6%

0,
00

4%

0,
00

2%

0,
00

1%

0,
00

0%

Overestimation

A
cc

um
ul

. F
re

qu
en

cy

Fig. 1 Frequency histogram for overestimation
when using a locking cache.

4 Performance analysis
Regarding performance, it is not easy to compare the
performance of a real-time system running over two
different hardware. If the same set of tasks is
schedulable in both architectures, there are a lot of
characteristics and metrics useful to compare
performance. The approach proposed in this work to
compare the performance obtained from both locking
cache and conventional cache is the schedulable
utilization.

The schedulable utilization is the processor’s
utilization the system makes, assuming that every
execution of every task in the system takes the
maximum and worst possible response time. This is
an upper bound of the actual utilization. The response
time of tasks vary for each execution, but in the worst
scenario the response time of each task is constant
and therefore the maximum one, so the system’s

utilization is always lower or equal to schedulable
utilization. Since the real-time designer must only use
estimated and safe values, the utilization must be
calculated with the same criterion.

The utilization is traditionally calculated as the
sum of Ci/Pi, where Ci is the WCET of task τi

considering cache, and Pi is the period of task τi. But
the schedulable utilization used in this work is
calculated from response time because the inter-task
interference must be accounted. In a cached system,
tasks spend processor time while executing its
instructions, but also while reloading cache contents
after preemption. WCET considers task executing
alone in the system, so cache-related preemption
delay is not incorporated in this time. Response time,
calculated using CRTA and taking into account the
cache includes the cache-related preemption delay for
each preemption, so both inter-task and intra-task
interference is considered.

But response time of a task τi includes not only
execution time and cache reload time, but also
execution time and cache reload times of all higher
priority tasks. Therefore, the execution time including
cache-related preemption delay is extracted from
response time using RTA expression (equation 2),
where Ri, Tj and Cj (j has a higher priority than i) are
known. Note that Ri includes cache-related
preemption delay, since Ri comes from the CRTA
equation used in genetic algorithm.

j
ihpj j

i
ii xC

T
RCR ∑

∈ 










+=

)(

(2)

changing the position of terms:

11 RC =′

j
ihpj j

i
ii xC

T
RRC ∑

∈ 










−=′

)(

(3)

that is, the execution time of task τi is its response
time minus the time other higher-priority tasks have
been executing during task τi response time. Since Ri
includes all cache effects (both intra and inter task
interference), C’i include them as well.

Estimated schedulable utilization of the locking
cache (Ul) is the sum of the utilization of all tasks in
the system, as shown in equation (4)

∑ ′
=

i

i
l T

C
U

(4)

where C’i is the execution time of task τi calculated in
equation 4 and Ti is the period of task τi.

Actual (simulated) schedulable utilization of
conventional caches (Uc) is calculated in the same
way from equations (2) to (4), but using the worst
response time from the hyperperiod simulation
instead the estimated one.

To compare the behaviors of the locking and
conventional caches, Performance (π) is defined as
the schedulable utilization of the conventional cache
divided by the schedulable utilization of the locking
cache (π= Uc/Ul). π values greater than 1 indicate that
locking caches provide a lower utilization than
conventional caches, providing better performance.

Fig. 2 presents the accumulated frequency of π.
Y-axis value is the percentage of tasks with a π
higher than x-axis value. Table 2 shows a statistical
summary of π. These figures and table show that in a
great number of experiments, locking caches provide
the same or better performance than conventional
caches, reaching about 60% of experiments with no
loss or very slight loss of performance. However, the
variability is very high, since π value range from 0.3
to 1.4.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
3

1.
5

>1
.5

Performance

Ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y

Fig. 2 Frequency histogram for Performance (ππππ).

Average 0.90275396
Median 1.01112334
Minim 0.35296379
Maxim 1.35798524
Standard deviation 0.23985561
Low quartile 0.715842316
High quartile 1.058288365
Std. Skewness -3.69349
Std Kurtosis -1.6793
of experiments 182
Experiments with π>= 1 101 (55.49%)
Experiments with π>= 0.9 140 (62.64%)
Table 2 Statistical summary for Performance

Performance
0 0,3 0,6 0,9 1,2 1,5

0,1
1
5

20
50
80
95
99

99,9

percentage

Fig. 3 Normal probability plot for Performance

Standardized skewness and standardized kurtosis
can be used to determine whether the data comes
from a normal distribution. Values of these statistical
data outside the range of -2 to +2 indicate significant
departures from normality, which would tend to
invalidate any statistical test regarding the standard
deviation. In this case, the standardized skewness
value is not within the range expected for data from a
normal distribution. Fig. 3 shows the normal
probability plot for π. However the points are very
close to the reference line, indicating a quasi-normal
distribution, in this graph can be noticed the existence
of two populations (subsequent analysis must take
account of this question)

Intuitively, the most important factor in the
behavior of π is the relationship between cache size
and experiment size, since all tasks in the system
compete for preloading their instructions in the cache.
Ratio_size is defined as cache size divided by the
sum of all system’s tasks sizes:

 (Ratio_size = Cache_Size/System_Size).

Fig. 4 shows the scatterplot of π versus ratio_size.
Each point is the performance (π=Uc/Ul) of each
experiment. The x-axis is shown in logarithmic scale.
This figure can be divided into three spaces. The first
space, on the left side of the graph and comprising
values of ratio_size lower than 0.1, where most of the
experiments present a π value higher than 1.0. The
second space, at the center of the graph and
comprising ratio_size values between 0.1 and 1,
where the major part of experiments have a π value
below 1, with great variability. Finally, a third space,
comprising ratio_size values above 1, where all
experiments have a π value higher than 1. This shows
that there is a strong relationship between ratio_size
and performance of the locking cache. In order to
study this interaction, Fig. 5 presents the performance
grouped by ratio_size values. Seven groups,
representing the seven cache sizes used in
experiments, have been defined, using the following
rules. Table 3 shows the limits of each group:
• Upper limit of group n is defined as z/64, where
z=2(n-1) and n = 1..7
• An experiment xi, with ratio_size r, will belong to
group n if: Upper limit of group n-1< r < Upper limit
of group n

Group Cache
size

Upper
limit

Group Cache
Size

Upper
limit

1 1 Kb 0,0313 5 16 Kb 0,4900
2 2 Kb 0,0525 6 32Kb 1,0000
3 4 Kb 0,1150 7 64 Kb ∞
4 8 Kb 0,2400

Table 3 Upper limits and cache size for grouping

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

0,01 0,1 1 10ratio_size

Pe
rf

or
m

an
ce

 (π
)

Fig. 4 Scatterplot of ππππ (Uc/Ul) versus ratio_size

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

0 1 2 3 4 5 6 7 8

perform ance
av erage
m edian
Low quartil
H igh quartil

G roups

P
er

fo
rm

an
ce

 (π)

Fig. 5 ππππ (Uc/Ul) versus groups of ratio_size.

In Fig. 5 performance behavior can be divided
into four spaces regarding the value of ratio_size.
These four spaces, called from A to D are described
below. Table 4 shows a statistical summary of spaces
A to D.
• Space A: This space comprises groups 1, 2, and
part of 3 (ratio_size below 0.08). In this space, nearly
84% of the experiments present a π value equal or
greater than 1 with low variability. Also π rises as the
ratio_size increases. The behavior of this space is due
to the large difference between cache size and code
size. For small cache size, the intra-task interference
is very high, and only a few number of instructions
remain in the cache for two or more executions.
However, the locking cache avoids replacement, so
the instructions locked in the cache always produce
hit. For instructions not locked, their behavior is the
same as in conventional small caches, replacing from
temporal buffer after each execution. Space A shows
a small increase of performance for the locking cache
on the right side. While the conventional cache
experiences the same intra-task interference when
cache size increases in few bytes, locking caches
profit for each byte added to cache size. In addition,
the inter-task interference is very high for the
conventional cache, but not for the locking cache.
• Space B: This space comprises the part of group 3
not included in space A, group 4 and part of group 5
(ratio_size below 0.37). Only 20% of the experiments
have a performance equal or greater than 1. The
variability is very high, as the distance between upper

and low quartile reflects. Performance of the locking
cache falls down quickly as ratio_size rises. In this
space, the dynamic behavior of the conventional
cache profits from cache size, because many pieces of
code with high degree of locality fit into cache.
However, the locking cache must assign the cache
lines to only a small set from the temporal buffer. The
effect of inter-task interference is favorable to the
locking cache, but its effect on performance is low
since cache size is still low.
• Space C: This space comprises part of group 5 and
all experiments of group 6 (ratio_size lower than 1).
In this space, only 17% of the experiments present a
performance equal or greater than 1. The behavior of
the locking cache in this space is the inverse than in
space B. As ratio_size rises, the performance of the
locking cache improves, because only instructions
with very low degree of locality are forced to rest in
the main memory. When the value of ratio_size is
close to 1, the value of π is close to 1. Regarding
inter-task interference, since cache size is now great,
the impact of cache-related preemption is very high
and preemptions penalize performance in
conventional caches.
• Space D: This space comprises experiments fitting
group 7, all of them with ratio_size equal or greater
than 1. In all cases, all experiments have performance
greater than 1, because all instructions are preloaded
and locked in the cache. No intra- nor inter-task
interference exist, both in conventional and locking
caches. But the locking cache presents a slight
improvement in performance because when the
system begins full operation, the cache is fully
loaded, and no mandatory misses happen.

Conclusions from Table 4 and Fig. 5 are clear.
The relationship between locking cache size and
system size (as the sum of all tasks’ sizes) allows the
designer of real-time systems to estimate the
performance provided by static use of locking cache
in front of conventional caches.

Space A B C D
Total experiments 56 56 34 36
Exps. with π≥1 83.93% 21.43% 17.65% 100%
Exps. with π≥0.9 91.07% 26.79% 35.29% 100%
Average 1.03 0.75 0.79 1.05
Median 1.05 0.67 0.79 1.03
Minimum 0.47 0.35 0.43 1.00
Maximum 1.36 1.29 1.07 1.16
Lower quartile 1.01 0.53 0.65 1.02
Upper quartile 1.10 0.93 0.96 1.09
Std. deviation 0.17 0.27 0.19 0.05

Table 4 Statistical summary for spaces A to D

The following analysis provides more information
about performance behavior of locking caches,

concerning software parameters like Locality and
Interference degree. The analyses are based on the
Analysis of Variance (ANOVA), and the normality of
data used in each analysis has been checked, in order
to guarantee the veracity of results [14].

The first analysis is a paired-sample analysis in
order to identify the effect of the Interference factor.
Each set of tasks generates two experiments, one with
low degree of interference and other with high degree
of interference. Also, experiments with high and low
Locality are analyzed separately, allowing the
identification of interaction between both factors.

The analysis is performed for each space
described previously. Table 5 shows the analysis
summary. Mean is the mean of difference of each
pair of experiments, that is, π value of experiments
with low degree of Interference minus π value of
experiments with high degree of interference. The
result is the response given by the Null Hypothesis
Test, using a t-test with alpha = 0.05 (95%) and
hypothesis = 0.00. Reject means that the mean
significatilly differs from 0.

Space Locality Mean of Diff P-Value Result
Low -0.110092 0.001 RejectA
High 0.0269674 0.541124 No reject
Low -0.211077 0.000006 RejectB
High -0.0024647 0.946495 No Reject
Low -0.292277 0.0018468 RejectC
High -0.0814585 0.289005 No Reject
Low -0.0072157 0.0898641 No RejectD
High -0.0052957 0.0505166 No Reject

Table 5 Paired-sample analysis for ππππ, concerning
Interference and Locality factors

For spaces A, B and C, the Interference factor has
a statistical effect when the degree of locality is low.
The mean value of the differences is negative, so
experiments with high Interference values have better
performance than experiments with low Interference
values. This effect is because the locking cache does
not perform any cache reload (but the temporal
buffer) after preemptions, while conventional caches
experience a significant cache-related preemption
delay, so performance of conventional cache is worse
when a large number of preemptions occur, that is,
when the interference between tasks is high. For
systems with a high degree of locality, the
conventional cache is used more efficiently than the
locking cache, improving performance for the first
type of cache. This profit from locality is cancelled
by cache-related preemption delay, so there is no
performance difference when interference is high or
low.

Regarding space D, all instructions fit in the
cache, and there is no replacement of cache contents

after preemptions, so the effect of the interference
factor is null. So there is no statistically significant
difference between conventional and locking caches.

The locality factor can not be analyzed using the
paired-samples, since it is not possible to generate
two experiments with the same characteristics but
with different degree of locality. Locality is intrinsic
to tasks’ structure and changing the degree of locality
also changes other task parameters. Therefore, the
locality factor is analyzed using the null hypothesis
test to the difference of means instead of using the
mean value of difference. Using difference of means
provides less accurate results than using the mean
value of differences.

Table 6 shows the summary for the hypothesis
test applied to meanL-meanH = 0, using a t-test with
alpha = 0.05 (95%), where meanL is the mean of π
obtained in experiments with low locality, and meanH

is the mean of π obtained in experiments with high
locality. The result is the response given by the test,
indicating the difference is not 0 (reject hypothesis)
or the difference is 0 (do not reject hypothesis).

Space MeanL MeanH P-value Result
A 1.09603 1.00928 0.0276242 Reject
B 0.877057 0.591776 0.00003252 Reject
C 0.796151 0.783419 0.853871 No Reject
D 1.06987 1.01978 0.00076907 Reject

Table 6 Summary for effect of Locality factor
analysis

For spaces A and B, the hypothesis is rejected,
that is, the means for low and high degree of locality
are statistically different. Since the value of meanL-
meanH is positive, meanL is greater than meanH, so
experiments with high degree of locality give worse
performance from the locking cache point of view.
This effect result from the profit obtained from
conventional caches when the degree of locality is
high, since the level of intra-task interference is
minor in this scenario. Also, for lower ratio values,
the locking cache preloads and locks a small part of
all system code, leaving in competition for the
temporal buffer pieces of the code with high locality,
while in the conventional cache these pieces of the
code are loaded when needed. The dynamic and
adaptive behavior of the conventional cache gives
better performance than the static behavior of the
locking cache.

For space C, the difference between means is
zero. Locality of tasks does not modify performance.
In this space, the locking cache is large enough to
preload and lock all pieces of the code with high
locality, giving a behavior similar to the conventional
cache.

Regarding space D, cache size is large enough to
load all system instructions, so locality does not

affect performance, since there is not intra or inter
task interference. However, the test indicates that
there is a statistical effect of locality, giving better
performance (from the locking cache point of view)
when locality is low. This result is due to mandatory
misses. The locking cache gives better performance
than the conventional cache because the locking
cache is preloaded during system start-up, while the
conventional cache is loaded during system
operation, generating mandatory misses, one for each
main memory block. If the degree of code locality is
high, the structure of tasks is plenty of loops, or loops
have a large number of iterations, or both cases. This
way, in experiments with high locality, mandatory
misses are weakened by the intensive execution of
instructions. The locking cache, however, does not
present mandatory misses, so locality does not
modify its behavior.

5 Conclusions
The analysis accomplished in this work shows that
the locking cache provides predictability in
estimating the response time of tasks, providing very
accurate results, and there is no loss of performance
in more than 55% of the cases.

The analysis of performance has been
accomplished using schedulable utilization,
calculating it from the response time of tasks, thus
intra-task and inter-task interference are considered.
The performance of the locking cache is obtained
from estimated values, giving a conservative and
safety value. The behavior of locking-cache
performance versus conventional-cache performance
has been divided into four scenarios regarding the
ratio between size of the cache where system runs
and size of the system. A strong relationship between
locking-cache performance and this ratio has been
noticed and identified, as well as the variability in the
results of the performance values. Therefore, the real-
time designer may estimate, without any experiment,
the cost of using a locking, that is, the probability to
lose performance and get a worse schedulable
utilization than using conventional caches. For
extreme values of relationship between cache and
system sizes, the locking cache offers in most cases
better performance than the conventional cache. For
central values of relationship, the locking cache
offers worse performance than the conventional
cache. Also, the effect of software parameters
(locality and interference) on the performance of the
locking cache has been analyzed and identified,
taking into account the scenario where the system
runs.

References:
[1]Healy, C. A., R. D. Arnold, F. Mueller, D. Whalley and

M. G. Harmon (1999). Bounding Pipeline and
Instruction Cache Performance. IEEE Transaction on
Computers. Volume 48, pages 53-70

[2]Lim, S. S., Y. H. Bae, G. T. Jang, B. D. Rhee, S. L.
Min, C. Y. Park, H. Shin, K. Park, and C. S. Kim
(1994). An Accurate Worst Case Timing Analysis
Technique for RISC Processors. Proc. of the 15th IEEE
Real-Time Systems Symposium.

[3]Li, Y. S., S. Malik, and A. Wolfe (1996). Cache
Modeling for Real-Time Software: Beyond Direct
Mapped Instruction Caches. Proc. of the 17th IEEE
Real-Time Systems Symposium.

[4]Lee, C. G., J. Hahn, Y. M. Seo, S. L. Min, R. Ha, S.
Hong, C. Y. Park, M. Lee, C. S. Kim (1997). Enhanced
Analysis of Cache-Related Preemption Delay in Fixed-
Priority Preemptive Scheduling. Proc. of the 18th IEEE
Real-Time System Symposium.

[5]Busquets, J. V., J. J. Serrano, R. Ors, P. Gil, A.
Wellings (1996). Adding Instruction Cache Effect to an
Exact Schedulability Analysis of Preemptive Real-
Time Systems. Proc. of the IEEE Euromicro Workshop
on Real-Time Systems

[6]Kirk, D. B. (1989) SMART (Strategic Memory
Allocation for Real-Time) Cache Design. Proc. of the
10th IEEE Real-Time Systems Symposium.

[7]Liedtke, J., H. Härtig, M. Hohmuth (1997). OS-
Controlled Cache Predictability for Real-time Systems.
Proc of the IEEE Real-Time Technology and
Applications Symposium.

[8]Wolfe, A. (1993). Software-Based Cache Partitioning
for real-time Applications. Proc of the 3th International
Workshop on Responsive Computer Systems.

[9]Martí Campoy, A., A. Pérez, A. Perles, J.V. Busquets
(2001a). Using Genetics Algorithms in Content
Selection for Locking- Caches. IAESTED International
Conference on Applied Informatics.

[10]Martí Campoy, A., A. Perles, J.V. Busquets (2001b)
Static Use of Locking Caches in Multitask Preemptive
Real-Time Systems. IEEE Real-Time Embedded
Systems Workshop. London, UK

[11]Shaw, A. (1989).Reasoning About Time in Higher-
Level Language Software. IEEE Transaction on
Software Engineering. Vol. 15, Num. 7.

[12]Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization and machine Learning Addison-Wesely
Co.

[13]Patterson, D. and J. L. Hennessy (1994). Computer
Organization and Design. The Hardware/Software
Interface. Morgan Kaufmann. San Mateo.

[14]Jain, Raj. (1991) The Art of Computer Systems
Performance Analysis. Jhon Wiley & sons Ed. New
York

Acknowledgements: We would like to thank the
Foreign Language Co-ordination Office at Universidad
Politécnica de Valencia for their help in revising this
paper.

