
Cache contents selection for statically-locked instruction caches:
an algorithm comparison

Antonio Martı́ Campoy* , Isabelle Puaut** , Angel Perles Ivars* , Jose Vicente Busquets Mataix*

* Computer Engineering Department, Technical University of Valencia, Spain
** Université de Rennes / IRISA, France

Abstract

Cache memories have been extensively used to bridge
the gap between high speed processors and relatively
slower main memories. However, they are sources of pre-
dictability problems because of their dynamic and adaptive
behavior, and thus need special attention to be used in hard
real-time systems. A lot of progress has been achieved in
the last ten years to statically predict worst-case execu-
tion times (WCETs) of tasks on architectures with caches.
However, cache-aware WCET analysis techniques are not
always applicable or may be too pessimistic. An alterna-
tive approach allowing to use caches in real-time systems
is to lock their contents (i.e. disable cache replacement)
such that memory access times and cache-related preemp-
tion times are predictable. In this paper, we compare the
performance of two algorithms for static locking of instruc-
tion caches: one using a genetic algorithm for cache con-
tents selection [3] and a pragmatical algorithm, called her-
after reference-based algorithm [14], which uses the string
of memory references issued by a task on its worst-case ex-
ecution path as an input of the cache contents selection al-
gorithm. Experimental results show that (i) both algorithms
behave identically with respect to the system worst-case uti-
lization; (ii) the genetic algorithm behaves slightly better
than the reference-based algorithm with respect to the av-
erage slack of tasks; (iii) the execution time of the cache-
contents selection procedure is much better when using the
reference-based algorithm than with the genetic algorithm.

1 Introduction

1.1 Caches and hard real-time systems

Cache memories have been designed as a solution for the
ever-growing discrepancy of speed between processors and
relatively slow memory components. These are typically

small content associative memories with small access time,
which are inserted between the CPU and the main mem-
ory and which act as ante-memories. Indeed no change
is required in the memory addressing scheme since caches
act transparently. They work in such a way that they ex-
ploit the spatial and temporal locality of memory reference
streams. Therefore at any time cache memories contain
memory blocks that are likely to be accessed in the near
future. A key property of cache memories is that they im-
prove the average performance of a computer system.

A real-time system is a computer system for which the
good functioning is not only defined by the correctness of
results, but also by the dates at which these results are to
be produced. More particularly, a hard real-time system re-
quires the exact knowledge of these dates. In order to sat-
isfy this requirement, such a system must use an adequate
scheduling policy such as Fixed Priority Preemptive (FPP),
and has to be validated. The validation process consists of
the computation of the worst-case execution time (WCET)
of each task, and then in performing a schedulability analy-
sis on the whole task set. Extensive studies have been done
on both latter subjects.

Now cache memories are a source of unpredictability is-
sues. Two phenomena consolidate this fact :

• Intra-task interference, which occur when a task over-
rides its own blocks in the cache, due to conflicts.

• Inter-task interference, which arise in multitasking sys-
tems, due to preemptions. These interference imply a
so-called cache-related preemption delay to reload the
cache after a task was preempted.

As a consequence, the designer of a hard real-time sys-
tem may choose not to use cache memories at all, at the cost
of over-sizing the system, or may choose to use scratch-pad
memories [1], which are basically on-chip static memories.
Nevertheless there is a growing demand in the industry of
hard real-time systems with better performance and cheaper
hardware. This fact drives to consider processors with cache

A
Proceedings of the 17th Euromicro Conference on Real-Time Systems. Pages 49-56. Palma de Mallorca, Spain, July 2005

hierarchies. As regards the validation process, an important
issue here is to cope with the effects of cache memories.

There are at the present time two categories of ap-
proaches to deal with caches in real-time systems. In the
first one, cache analysis, caches are used without any re-
striction. Static analysis techniques (cache-aware WCET
analysis [11, 9] and schedulability analysis [2, 6]) predict
their worst-case impact on the system schedulability.

The second category of approaches consists in using
caches in a restricted or customized manner so as to adapt
them to the needs of real-time systems and schedulability
analysis. Cache partitioning techniques [5] assign reserved
portions of the cache to certain tasks in order to guarantee
that their most recently used code or data will remain in
the cache while the processor executes other tasks. The dy-
namic behavior of the cache is kept within partitions. These
techniques eliminate inter-task interference, but need extra
support to tackle intra-task interference (e.g. static cache
analysis) and reduce the amount of cache memory available
for each task.

Within the same category, another way to deal with
caches in real-time systems is to use cache locking tech-
niques [3, 14, 19], which load the cache contents with some
values and lock it to ensure that the contents will remain
unchanged. This ability to lock, entirely or partially, the
cache contents is available on several commercial proces-
sors (among others : Motorola ColdFire MCF5249, Mo-
torola PowerPC 603e, IDT RC64575, ARM 940). The
cache contents can be loaded and locked at system start for
the whole system lifetime (static cache locking), or changed
at run-time, like for instance when a task is preempted by
another one (dynamic cache locking). The key property of
cache locking is that the time required to access the memory
is predictable.

1.2 Paper contributions and organization

Regarding static locking of instruction caches, two
classes solutions have been proposed: one using a genetic
algorithm for cache contents selection [3] and a pragmat-
ical algorithm, called hereafter reference-based algorithm,
which uses the string of memory references issued by a task
as an input of the cache contents selection algorithm [14].
These two classes of solution can be tailored to select the
cache contents at the system level (global locking) or at the
task-level (local locking) with then the necessity of reload-
ing the cache contents at context switch points. In this pa-
per, we concentrate on global locking.

This paper is devoted to a comparison of these two
classes of solutions (genetic and reference-based) for in-
struction cache locking. Experimental results show that (i)
both algorithms behave identically with respect to the sys-

tem worst-case utilization; (ii) the genetic algorithm behave
slightly better than the reference-based algorithm with re-
spect to the average slack of tasks; (iii) the execution time of
the cache-contents selection procedure is much better when
using the reference-based algorithm.

The rest of this paper is organized as follows. Sec-
tion 2 first briefly presents the two compared algorithms for
cache contents selection. Section 3 presents the experimen-
tal setup. Section 4 then achieves a statistical analysis of the
performance of systems using the two cache-contents selec-
tion algorithms. The comparison metrics are the worst-case
processor utilization, the task slacks and the execution times
of the cache contents selection algorithms. We present some
concluding remarks in Section 5.

2 Cache contents selection algorithms

After a presentation of considered assumptions and nota-
tions (§ 2.1) this section briefly presents the compared cache
contents selection algorithms (§ 2.2 and 2.3).

2.1 Assumptions and notations

In the description of the algorithm, we consider a CPU
equipped with a W-way set-associative instruction cache.
The cache comprises a total of B blocks of SB bytes each.
Blocks are grouped into S sets of W cache blocks; an in-
struction at address ad is loaded into one of the W blocks
of set

⌊
ad
SB

⌋
mod S. Our cache model encompasses direct-

mapped caches (W = 1, S = B), set-associative caches
(1 < W < B) and fully-associative caches (W = B,S =
1).

The two algorithms presented hereafter consider a set of
N periodic tasks τi, 1≤i≤N with periods Ti and deadlines
Di. The worst-case execution time of task τi is noted Ci.
The code of a task τi is split into program lines Li,j of size
SB ; a program line is a sequence of instructions mapped
into a cache block. We consider a fixed-priority schedul-
ing for tasks, and tasks are numbered according to their re-
spective priorities, task τ0 being the task with the highest
priority.

2.2 Reference-based algorithm [14]

We assume that for every task τi the sequence σi of pro-
gram lines issued by τi is known. We call nloadi,j the num-
ber of references to program line Li,j issued by τi in the
sequence σi. The algorithm uses this information to select
the cache contents, and aims at minimizing the worst-case

CPU utilization
N∑

i=1

Ci
Ti

.

The very simple idea behind the algorithm is to lock the
most frequently referenced program lines of every task. As
multiple program lines from different tasks may compete
for the same cache block, priority is given to the tasks with
the greater importance Ii. In the context of this paper, fo-
cusing on periodic tasks, Ii is defined as the inverse propor-
tional to its period Ti, which corresponds to the static prior-
ity assignment used by the Rate-Monotonic (RM) schedul-
ing policy [8], optimal among static priority assignments for
the considered task model. However, different (static) defi-
nitions of the importance of tasks can be used as well, such
as the deadline monotonic static priority assignment [7] or
user-defined task importances.

The algorithm works as follows. LetLs be the set
of program lines (for all possible tasks) that can
be mapped into the W cache blocks blocks of set
s. The algorithm locks into theW blocks of every
set s the W program lines Li,j of Ls having the
highest nloadi,j ∗ Ii factor.

Note that the choice of the sequences σi has an impact on
the contents of the locked cache, and therefore on the sys-
tem performance. Indeed, since task τi can follow different
paths according to its input data, σi depends on the consid-
ered execution path. In this paper, the algorithm is applied
on the sequences of memory references issued along the
worst-case execution path of every task assuming no cache
is used.

2.3 Genetic algorithm [3]

Genetic algorithms are inspired by Darwin’s theory of
evolution, and are particularly suited to the resolution of
optimization problems with a very large search space. They
operate on a population of potential solutions applying the
principle of survival of the fittest to produce better and bet-
ter approximations of a solution. At each generation, a new
set of approximations is created by the process of selecting
individuals according to their level of fitness in the prob-
lem domain and breeding them together using operators
borrowed from natural genetics. This process leads to the
evolution of populations of individuals that are better suited
to their environment than their ancestors, just as in natural
adaptation.

The use of genetic algorithm in any search problem re-
quires the definition of a set of elements and operators: rep-
resentation of the solutions (codification), a fitness function
to evaluate the different solutions, a selection scheme to sort
candidate individuals for breeding, cross-over and mutation
operators to transform the selected individuals.

Codification. Each individual, representing a possible so-
lution, is a bitmap of size nl, with nl the total number

of program lines for all tasks. A bit set to 1 means
that the corresponding program line is locked into the
cache.

Fitness. The fitness function is the weighted average of all
tasks response times (see equation 1, whereRi denotes
the response time of task τi. This fitness function aims
at improving the average response-time of tasks, pre-
cluding that the genetic algorithm assigns all availaible
cache blocks to the higher priority tasks. Other fitness
function has been evaluated in [17] and have shown
slight improvements on some performance metrics.

Fitness =
R0 +R1 + 2R2 + 4R3 + ... + 2N−2RN−1

2N−1
(1)

Selection. Rank-based selection, in which the probabil-
ity to select one individual is a linear function of its
rank [10], is used. Individuals are sorted according to
both their fitness value and their validity (an individual
is said to be valid if the number of bits set in its rep-
resentation is lower or equal to the number of cache
blocks B).

Crossover and mutation. One point crossover is applied:
an index into the parents chromosomes is randomly se-
lected. All data beyond that point in the chromosomes
is swapped between the two parent organisms, defining
the children chromosomes. Three types of mutations
have been introduced:

− M1. random reduction of the number of locked
program lines,

− M2. random increase of the number of locked
program lines,

− M3. random modification of the identity of one
locked program line, the total number of locked
program lines being left unchanged.

Rule M1. (resp M2.) applies to invalid individuals
whose number of locked program lines is greater than
(resp. lower than) B, while rule M3 applies to valid
individuals.

Initial population and algorithm parameters. The ini-
tial population is made of valid individuals only. The
bitmap of every individual in the initial population has
B consecutive bits set, the index of this series of 1
being randomly selected. The other parameters of the
algorithm are given in table 1.

These parameters spring from a set of experiments
where the behaviour of the genetic algorithm was stud-
ied.

Population size 200
Number of generations 5000
Probability of crossover 0.6
Probability of mutation (rules R1..R3) 0.01
Probability of selection of the individual with
the highest rank

0.1

Table 1. Parameters of the genetic algorithm

An interest of genetic algorithms is that the produced re-
sults (here, cache contents) can be used at any time, that is,
it is not necessary to wait the algorithm end to get partial
results.

3 Experimental setup

3.1 Hardware configuration

We consider a processor with an instruction cache and
a 16B (4 instructions) instruction prefetch buffer. The
cache configurations used in the performance comparison
are given in table 2.

Block size (SB) 16 bytes (4 instructions)
Cache structure direct-mapped
Cache size [1Kb .. 64 Kb]

Table 2. Cache parameters

In addition, since we are only concerned with timing the
cache behavior, we adopt a very simple timing model for in-
structions. An instruction is assumed to execute in Thit = 1
processor cycles in case of a hit in the instruction cache or
prefetch buffer, and in Tmiss = 10 processor cycles other-
wise.

3.2 Workload

The algorithms have been compared using 26 different
synthetic task sets. Synthetic tasks are generated by an au-
tomatic tool. Input parameters to this tool are the size of
the task, number of loops and nesting level, size and iter-
ations of loops, number of if-then-else structures and their
respective sizes. The user must provide the minimum and
maximum desired values for these parameters. The tool ran-
domly selects the actual value from this range. For the ac-
complished experiments, these parameters has been taken
out from usual embedded workload, like Fast Fourier Trans-
form, DSP algorithms for signal processing, sorting algo-
rithms and matrix operations. However, some tasks has

been created with no reference, but aimed to stress the lock-
ing cache architecture. The characteristics of tasks and task
sets are summarized in table 3.

Number of tasks per task set [3..8]
Maximum task set code size 64KB
Number of different tasks 50
Tasks code size [1KB..32KB]

Table 3. Workload parameters

Within a task set, the task periods Ti, equal to their dead-
lines Di have been adjusted such that the system is schedu-
lable with both conventional and locking cache.

An experiment is defined by a pair (task set, cache size).
146 experiments have been conducted. Only experiments
whose total code size is larger than the cache size have been
considered in the following analysis, on the one hand be-
cause this is the most realistic situation and on the other
hand because both algorithms would behave identically for
task sets smaller than the cache size.

3.3 WCET and response time computation

Tasks worst-case execution times estimates (WCETs)
are computed using a tree-based approach [15, 16]. The
WCET estimate of a task is computed using recursive for-
mulas that operate on the task’s syntactic tree (a node in
the tree represents a control structure – loop, conditional,
sequence of blocks –, a leave represents a basic block –
branch-free sequence of instructions). As we voluntarily ig-
nore hardware components other than the instruction cache,
the WCET estimate of a basic block BB can be computed
in a straightforward manner from the WCET of its pro-
gram lines pl: WCET (BB) =

∑npl
pl=1WCET (pl), with

WCET (pl) = Thit or Tmiss depending on whether pro-
gram line pl has been locked in the instruction cache or not.

The response times of tasks are computed using CRTA
(Cache-aware Response Time Analysis), which extends the
well-known exact response time analysis (RTA) schedula-
bility test [4, 18] to take cache-related preemption delays
into account. Given a task τi, CRTA works by considering
the interferences produced by the execution of the higher
priority tasks on τi within an increasing time window wni
(n is the recurrence index). The response time Ri of task
τi is the fixed point of the sequence given in equation 2 be-
low, where hp(τi) denotes the set of tasks that have a higher
priority than τi and γ denotes the cache-related preemption
delay (the equations assume tasks with distinct priorities).
In our context, the value of γ is the time needed to reload
the prefetch buffer plus the related context switch penalty,
and is a constant.

w0
i = Ci

wn+1
i = Ci +

∑

τj∈hp(τi)

⌈
wni
Tj

⌉
∗ (Cj + γ)→ Ri (2)

For a task τi, this series converges (to τi’s response time,
Ri) when

∑
τj∈hp(τi)∪{τi}

Cj+γ
Tj
≤ 1. Ri can then be com-

pared against τi’s deadline Ti to determine τi’s schedulabil-
ity.

3.4 Comparison metrics

From the cache contents generated by the two algorithms
of section 2, we present a statistical analysis of the perfor-
mance of the resulting task sets. We focus on worst-case
performance metrics, computed from the tasks WCETs and
the tasks response times:

• Processor (worst-case) utilization (U). The processor

utilization (ΣNi=1
C
′
i

Ti
, where C

′
i is the worst-case exe-

cution time of task τi including all cache effects) is an
interesting metric because it allows to know a lower
bound of the overall spare CPU capacity, which can
be used for instance for executing soft real-time tasks.
The lower the utilization, the better the cache contents
selection algorithm.

• Normalized (worst-case) slack (S). The normalized
slack for a task τi is defined as Si = Di−Ri

Di
= 1− Ri

Di
,

with Ri the task response time computed using re-
sponse time analysis. Si gives information about how
close a task is from missing its deadline. The larger
the normalized slack, the better the cache contents se-
lection algorithm. This metric is interesting because it
gives a task-level view of the spare processor capacity,
whereas the utilization gives a system-level view of the
system space capacity. This metric may be used to es-
timate which task has to (or may be) modified while
keeping the system schedulable.

• Execution time of the cache contents selection al-
gorithms. Although their speed is not the main con-
cern since cache contents are selected off-line, a fast
algorithm is better from the standpoint of development
comfort and productivity.

4 Algorithm comparison

4.1 Comparison of utilization

Let Uri (resp. Ugi) denote the (worst-case) utiliza-
tion of an experiment i when using the reference-based

(resp. genetic) cache contents selection algorithm. Since
the lower the utilization the better the performance, values
of ∆Ui = Uri − Ugi below zero demonstrate the superior-
ity of the reference-based algorithm, whereas values above
zero demonstrate the superiority of the genetic algorithm.
Values of ∆Ui are in the interval]− 1; +1[.

Table 4 gives statistics on values of ∆Ui = Uri − Ugi.
The average value of ∆Ui is very close to zero, whereas
its median value is zero. The standard deviation and quar-
tiles show that the vast majority of values are very close to
zero. This is confirmed by Box and Whisker plot showed
in Figure 1, where values into interquartile range are almost
identical to the average and mean.

Number of experiments 146
Average 0.0125386
Median 0
Standard deviation 0.0539221
Minimum -0.05984
Maximum 0.281344
Lower quartile -0.0006595
Upper quartile 0.000055
Experiments with P<0 69 (47.3%)
Experiments with P=0 11 (7.5%)
Experiments with P>0 66 (45.2%)
95% Confidence interval for average [0.0037184;0.0213588]
Stnd. skewness 17.7292
Stnd. kurtosis 30.1522

Table 4. Statistics summary for ∆Ui = Uri−Ugi

∆��� � ���
����� ���	 ��
	 ���	 ���	

Figure 1. Box and Whisker plot for ∆Ui = Uri−
Ugi

Confidence interval for average, that contains the aver-
age value, allows considering the average as the true aver-
age. However, there are two peculiarities. Firstly, the num-
ber of experiments with ∆Ui below zero is slightly greater

than the number of ∆Ui values over zero. Secondly, the
minimum and maximum, the Box and Whisker plot, and
the frequency histogram in Figure 2, show that ∆Ui val-
ues are greater when the genetic algorithm provides better
performance.

∆�� ����� � ���

�
	�

	
�
�
�
	

���� � ��� ��� ��� ���
�

��

��

��

��

���

Figure 2. Frequency histogram (percentage
of values of ∆Ui = Uri − Ugi inside the range
pointed by the x-axis)

In order to determine if these two peculiarities are signif-
icant, we have undertaken a deeper statistical analysis of the
samples. More precisely, we have carried out t-test, signed
test and rank signed test of null hypothesis with alpha equal
to 5% [10]. While the first test rejects the null hypothesis,
that is, the average is not zero and the genetic algorithm
provides better utilization, the other two tests do not reject
the hypothesis, so the mean is zero and both algorithms pro-
vides the same performance. Since the last two tests are less
sensitive to outliers, the data does not come from a normal
distribution as skewness and kurtosis show (values outside
the range of -2 to +2 indicate it), and there is a large num-
ber of outliers in the Box and Whisker plot, the t-test is less
reliable than the other two. Therefore, it can be assured that
both algorithms statistically yield the same utilization.

4.2 Comparison of slack

An interesting comparison metric is the tasks (normal-
ized) slack (simply called hereafter slack). Results concern-
ing tasks slack are presented in two different manners:

• statistical study of the worst-case (smallest) slack in
experiments. This metrics gives an idea of the system
robustness: any perturbation whose duration is shorter
than the worst-case slack can be supported by the sys-
tem

• statistical study of the average slack of individual tasks

4.2.1 Worst-case slack per experiment

LetWSri (respectivelyWSgi) denote the worst-case slack
of tasks in experiment iwhen using the reference-based (re-
spectively genetic) cache contents selection algorithm. A
summary of the statistics of ∆WSi = WSri −WSgi is
given in Table 5. Values of ∆WSi are in the interval]-
1,+1[. Since the greater the slack, the better the algorithm,
values of ∆WSi below zero indicate a better behavior of
the genetic algorithm, while values over zero indicate a bet-
ter behavior of the reference-based algorithm.

Number of experiments 146
Average -0.0180381
Median 0
Standard deviation 0.0767092
Minimum -0.458044
Maximum 0.067
Lower quartile -0.00005
Upper quartile 0.00063667
Experiments with ∆WSi < 0 63 (43.1%)
Experiments with ∆WSi = 0 13 (8.9%)
Experiments with ∆WSi > 0 70 (48.0%)
95% Confidence interval for average [-0.0305857;-0.00549053]
Stnd. skewness -20.3167
Stnd. kurtosis 42.5163

Table 5. Statistics summary for ∆WSi =
WSri−WSgi

The statistics summarized in Table 5 give contradic-
tory information: average and minimum value points to
larger slack when using genetic algorithm, while interquar-
tile range and frequencies points to larger slack when using
reference-based algorithm. Other statistics, like median or
standard deviation do not help to deciding if there exists any
difference between algorithms. From the three null hypoth-
esis test (t-test, sign test and signed rank test), the first of
them rejects the null hypothesis, but the last two ones does
not reject the null hypothesis. Therefore, we can conclude
that there is no statistical difference between the two algo-
rithms. Both algorithms thus statistically exhibit the same
robustness.

4.2.2 Slack of individual tasks

We now consider the distribution of the slacks of individ-
ual tasks. Table 6 summarizes the statistics concerning
∆Si = Sri − Sgi, where Sri (resp. Sgi) is the slack of
task τi with the reference-based (resp. genetic) algorithm.
Values of ∆Si below zero point to a better behavior of the
genetic algorithm, whereas values over zero point to a better
behavior of the reference-based algorithm.

Number of tasks 610
Average -0.0107234
Median -0.000015
Standard deviation 0.0471117
Minimum -0.458044
Maximum 0.067
Lower quartile -0.002376
Upper quartile 0
Tasks with ST<0 372 (61%)
Tasks with ST=0 103 (16.9%)
Tasks with ST>0 135 (22.1%)
95% Confidence interval for avg. [-0.014462; -0.00698473]
Stnd. skewness -60.8165
Stnd. kurtosis 211.039

Table 6. Summary statistics for ∆Si = Sri−Sgi

In the table, the average and median of ∆Si show
negative values, pointing a better behavior when the ge-
netic algorithm is used to select cache contents. Besides,
minimum, maximum, interquartile and confidence interval,
show that values of ∆Si are skewed towards negative val-
ues. All of these basic statistics, as well as a deeper statisti-
cal analysis (t-test, signed test and signed rank test for null
hypothesis with alpha 5%), show that the slacks of individ-
ual tasks with both algorithms are statistically different, and
that the genetic algorithm exhibits a better behavior than the
reference-based algorithm.

However, although these differences are statistically sig-
nificant, the slack improvement provided by the genetic al-
gorithm is small (maximum improvement of 7%, average
improvement of 1%).

Better behavior of the genetic algorithm compared to the
reference-based algorithm is due to the fitness function used
by the genetic algorithm. The fitness function is based of
the response time of tasks, which is a more precise, albeit
longer to compute, metric than the overall utilization used
by the reference-based algorithm.

4.3 Impact of system parameters

We have studied the impact on several parameters on the
utilization and slack. Studied parameters were: (i) task code
size (individual task code size and cumulated code size of
the task sets); (ii) number of tasks in the task sets; (iii) ra-
tio between code size and task size; (iv) tasks priorities (v)
number of executed instructions per-task (length of execu-
tion paths).

A statistical study did not show any significant impact
of the first fourth parameters on the compared behavior of
the genetic and reference-based algorithm, both considering
utilization and slack.

Among the studied parameters, the only factor having
a slight impact is the number of executed instructions per
task. For tasks with the longest execution paths (from 6 mil-
lion to 12 million of instructions), corresponding to loop-
intensive programs, the genetic algorithm yields slightly
better results than the reference-based algorithm, both con-
sidering the system utilization and slack. This phenomenon
comes from the way cache contents is selected in the
reference-based algorithm. The reference-based algorithm
bases its selection of cache contents on the references along
single path, the worst-case execution path (WCEP); consid-
ering only that path may cause the WCEP to change once
the cache contents is selected. Although this phenomenon
may appear for any program1, its impact is quantitatively
greater when the portion of code causing the WCEP to
change is repeated many times.

4.4 Execution time of algorithms

Blocks to be locked in cache are selected during design
phase, and thus the speed of cache contents selection does
not affect the performance of the actual system. However,
the speed of the algorithm for cache contents selection may
be important if source code of the system tasks are modified
frequently.

The execution times of both algorithms have been mea-
sured on a Pentium II, 200Mhz processor running Linux.
Both algorithms have been implemented in C. Over the 146
experiments we carried out, the reference-based algorithm
always executes in less than two minutes. In comparison,
the genetic algorithm took between two and six hours to ex-
ecute for most experiments, and in some cases more than
ten hours. Obviously, the reference-based algorithm is ex-
tremely faster than the genetic algorithm.

5 Concluding remarks

We have compared in this paper the behavior of two al-
gorithms for static global instruction cache locking: one
using a genetic algorithm for cache contents selection [3]
and a pragmatical algorithm, called reference-based algo-
rithm [14], which uses the string of memory references is-
sued by a task on its worst-case execution path as an input
of the cache contents selection algorithm. Experimental re-
sults have shown a similar behavior of the compared algo-
rithms, in terms of both processor utilization and worst-case
slack per task set. The genetic algorithm has demonstrated
a slightly better behavior regarding the average slack of in-
dividual tasks. However, its large execution time may not in

1It appears when the timing difference between the WCEP and the other
paths in the program is low, and was shown not to appear too often in
practice, as shown in [13].

general be worth paying such a small improvement over the
reference-based algorithm. One could envision using both
algorithms jointly, for instance by using the cache contents
produced by the reference-based algorithm, as a base cache
contents for the genetic algorithm.

Further work would be required to compare the perfor-
mance of the algorithms studied in this paper with the work
of Vera. et al [19], based on a more selective use of cache
locking.

6 Acknowledgments

This work has been supported in part by the Spanish
Comision interministerial de Ciencia y Tecnologia under
project CICYTTIC2003- 08106-C02-01

References

[1] L. Banakar, S. Steinke, B. Lee, M. Balakrishnan, and P. Mar-
wedel. Scratchpad memory : a design alternative for cache
on-chip memory in embedded systems. In Proc. of Tenth
International Workshop on Hardware/Software Codesign
(CODES 2002), Estes Park, Colorado, May 2002.

[2] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and
A. Wellings. Adding instruction cache effect to schedulabil-
ity analysis of preemptive real-time systems. In Proceedings
of the 1996 Real-Time technology and Applications Sympo-
sium, pages 204–212. IEEE Computer Society Press, June
1996.

[3] A. M. Campoy, A. P. Ivars, and J. V. Busquets-Mataix. Using
genetic algorithms in content selection for locking-caches.
In Proc. of the IASTED International Symposium on Applied
Informatics, pages 271–276, Innsbruck, Austria, Feb. 2001.

[4] M. Joseph and P. Pandya. Finding response times in a real-
time system. The Computer Journal, 29(5):390–395, 1986.

[5] D. B. Kirk. Smart (strategic memory allocation for real-
time) cache design. In Proceedings of the 10th IEEE Real-
Time Systems Symposium (RTSS89), pages 229–237, Santa
Monica, California, USA, Dec. 1989.

[6] Y.-H. Lee, D. Kim, M. Younis, J. Zhou, and J. McElroy. Re-
source scheduling in dependable integrated modular avion-
ics. In Proc. of the 2000 International Conference on De-
pendable Systems and Networks (FTCS-30 and DCCA-8),
pages 14–23, New York, USA, June 2000.

[7] J. Leung and J. Whitehead. On the complexity of fixed pri-
ority scheduling of periodic real-time tasks. Performance
Evaluation, 2(4):237–250, 1982.

[8] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the
ACM, 20(1):46–61, Jan. 1973.

[9] T. Lundqvist and P. Stenström. Timing anomalies in dy-
namically scheduled microprocessors. In IEEE Real-Time
Systems Symposium, pages 12–21, 1999.

[10] M. Mitchell. An Introduction to Genetic Algorithms. MIT
Press, 1996.

[11] F. Mueller. Timing analysis for instruction caches. Real-
Time Systems, 18(2):217–247, May 2000.

[12] E. Petrank and D. Rawitz. The harness of cache conscious
data placement. In Proc. of 29th ACM SIGPLAN-SIGACT
Simposium on Principles of Programming Languages, pages
101–102, Portland, Oregon, 2002.

[13] I. Puaut, A. Arnaud, and D. Decotigny. Performance anal-
ysis of static cache locking in hard real-time multitasking
systems. Technical Report 1568, IRISA, Oct. 2003.

[14] I. Puaut and D. Decotigny. Low-complexity algorithms for
static cache locking in multitasking hard real-time systems.
In Proceedings of the 23rd IEEE Real-Time Systems Sympo-
sium (RTSS02), pages 114–123, Austin, Texas, Dec. 2002.

[15] P. Puschner and C. Koza. Calculating the maximum ex-
ecution time of real-time programs. Real-Time Systems,
1(2):159–176, Sept. 1989.

[16] A. C. Shaw. Reasoning about time in higher-level lan-
gage software. IEEE Transactions on Software Engineering,
15(7):875–889, July 1989.

[17] E. Tamura, J. V. Busquets-Mataix, J.J. Serrano, and A. Marti
Campoy. A comparison of three genetic algorithms for
locking-cache contents selection in Real-Time systems. In
Proceedings of the 7th International Conference on Adap-
tive and Natural Computing Algorithms (ICANNGA05),
pages 462–465, Coimbra, Portugal, March 200

[18] K. Tindell, A. Burns, and A. Wellings. An extendible
approach for analysing fixed priority hard real-time tasks.
Real-Time Systems, 6(1):133–151, Mar. 1994.

[19] X. Vera, B. Lisper, and J. Xue. Data caches in multitasking
hard real-time systems. In Proceedings of the 24th IEEE
Real-Time Systems Symposium (RTSS03), Cancun, Mexico,
2003.

