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Abstract

In modern computers, memory hierarchies play a
paramount  role  in  improving  the  average  execution
time.  However, this fact  is not  so important in real-
time systems, where the worst-case execution time is
what  matters  the  most.  System  designers  must  use
complex  analyses  to  guarantee  that  all  tasks  meet
their  deadlines.  As  an  alternative  to  making  those
complex  analyses, it  is  proposed to build  a memory
hierarchy  such  that  it  provides  high  performance
coalesced with high predictability. At the same time,
the  memory  assist  should  imply  small-scale
modifications in the hardware. The solution is to be
centred on instruction fetching since it represents the
highest number of memory accesses.

1. Introduction

Cache memories are extensively used to reduce the
increasing  speed  gap  between  processor  and  main
memory because they provide lower average execution
times by minimising the  number of  accesses to  main
memory. However, their use in real-time systems arises
hard problems in calculating the Worst Case Execution
Time  (WCET)  because  cache  memories  present  a
dynamic, adaptive and non-predictable behaviour. This
lack of determinism precludes the use of well-known
schedulability analysis techniques in  order to  validate
the temporal correctness of the system. Several methods
and algorithms have been proposed to model the cache
behaviour and include it in the WCET [1], and to take
into account cache effects in the schedulability analysis
[2, 3]. As an alternative to cache modelling, other cache
schemas have been proposed to simplify the analysis,
like  the  use  of  locking  caches  [4].  Locking  cache
presents several advantages:
• Implementation  of  locking  cache  is  feasible  and

presents no construction complexity
• Locking cache offers a fully predictable behaviour,

allowing  the  use  of  simple  and  well-known
techniques for schedulability analyses

• Performance of locking cache is similar to that  of
conventional, non-predictable caches

Two  ways  of  using  locking  caches  have  been
proposed: static use of locking caches [5] and dynamic
use of locking caches [6].

In  static  use  of  locking  caches,  cache  contents,
determined  via  the  use  of  a  genetic  algorithm,  are
loaded  and  locked  during  system start-up,  and  those
contents  will  never  change  during  system operation.
Since the static use of locking cache is fully predictable,
it is easy to analyse its behaviour.

On the other  hand,  in  the dynamic use of locking
caches,  cache  contents  are  modified  during  system
operation in a controlled way. Every time a task begins
or  resumes  execution,  cache  is  flushed  and  then
reloaded with a set of instructions belonging to the new
scheduled  task.  This set  of  instructions is always the
same for  each task,  so dynamic use of locking cache
presents not just a high degree of predictability, but at
the same time, it improves the performance of static use
of locking cache [7] because each task may use all of the
space  available  in  the  whole  cache  for  its  own
instructions, while in static use the cache space is shared
by all of the tasks.

Furthermore,  in  more  than  210  experiments  with
assorted caches –varying parameters like cache size, line
size, degree of associativity,  miss and hit  times--  and
several sets of tasks, the dynamic use of locking caches
provided  the  same  or  better  performance  than
conventional  caches in  about 60% of the tests [6]; in
some cases,  however,  performance  falls  significantly.
This loss of performance is due to the cost of loading
and locking the cache contents every time a task begins
or  resumes  its  execution.  The  cost  of  loading  and
locking one memory block in cache is about five times
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the time needed to transfer a block from main memory
to cache in a conventional  cache,  because the load is
accomplished trough the execution of a small routine,
which is included in the scheduler.

This paper explores several memory architectures in
order  to  load  and  lock  the  cache  via  hardware
mechanisms, reducing so the time needed to load each
block. To load and lock memory blocks automatically
demands  modifications  both  in  main  memory
organization as well as in cache memory.

2. Rationale

The  system operation  of  dynamic  use  of  locking
cache as proposed in [6] is the following:

Every  time  the  operating system schedules  a  new
task,  a  small  routine  is  executed.  This  routine  reads
from  main  memory  the  predefined  set  of  addresses
whose contents must be loaded in cache, and then loads
the blocks associated to them; each block has the same
size as the cache line size. After all of the blocks have
been loaded, the locking cache is locked and the task
begins/resumes  execution.  Both  load  and  lock
operations  are  accomplished  through  cache-
management instructions.

This way of operation is inefficient  mainly due  to
two reasons: first, several accesses to main memory are
required for each block of main memory that must be
transferred to cache,  imposing a significant  overhead.
Second, the new task can not be dispatched immediately
after  it  is  ready  to  execute,  suffering  a  significant
latency because all  of its to-be-locked blocks must be
loaded before it begins/resumes execution.

In order to improve the performance of dynamically
locking cache, two basic requirements must be satisfied:
a) Main memory blocks must be transferred to cache

when fetched by the processor. That is, instructions
will be loaded and locked in cache, as the control
flow of the program requires them without invoking
any piece of extra code.

b) The latter implies that the cache memory controller
must be able to identify the instructions to be locked
in an automatic way. Blocks –belonging to any task-
to be locked in  cache must be marked before the
system begins execution,  during system design or
system start-up.

Should  the  previous  requirements  hold,  task
execution will begin as soon as possible since there is no
penalty  involved  by  load  and  lock  instructions,  and
there are no delays involved in identifying the blocks to
be locked.

3. Cache memory requirements

Several  commercial  processors  include  locking

caches in their memory hierarchies, but to the authors
knowledge there is no one adequate enough to achieve
the characteristics needed to get a predictable and high
performance cache schema. The most interesting is the
IDT 79RC64574 family of standalone processors, that
include a two-way set associative cache with a locking
mechanism which can be enabled/disabled on a per-line
basis. This is all that is needed for static use of locking
cache, where the instructions locked in cache will never
change. In the dynamic use of locking cache however,
every  time  a  new  task  is  scheduled  to  run,  cache
contents must be reloaded from main memory. With a
locking cache like the one provided in the IDT, it would
be necessary to execute a small loop that writes the tag
of each cache line, hence delaying task execution. So, in
order to get the maximum performance, the following
characteristics are proposed for a locking cache:
• Cache should be locked in a per-line basis. That is,

the system designer should be able to select the main
memory  block  to  be  loaded  in  each  cache  line.
Albeit, the whole cache must be locked to guarantee
predictability.

• Every cache line includes an extra bit named Lock
State Flag (henceforth, LSF), to signal whether the
cache  line  is  locked  or  not.  If  any  cache  line  is
locked, its content will not be replaced; otherwise,
its behaviour is the same as that  of a non-locking
cache.

• The  LSF  is  automatically  adjusted  when  the
processor fetches the  block since the  value of the
LSF is somehow embedded in the instruction stream
read from main memory.

• By  executing  a  processor  instruction  the  LSF  is
cleared  for  all  the  cache  lines  simultaneously,
unlocking the entire cache in one operation. This is
the only mechanism available to a programmer to
clear the LSFs.

• There exists a temporal buffer –or prefetch queue--
with size equal to one cache line and same behaviour
than  a  conventional  cache.  This  buffer  improves
execution time of non-locked instructions by taking
into  account  the  spatial  locality  of  non-locked
memory blocks.

When  the  scheduler  dispatches  a  new  task  or
resumes the  execution  of  a  pre-empted  task,  it  only
needs to clear the LSF of every cache line. After this,
the  cache  is  loaded  and  locked  as  instructions  are
fetched;  the  only penalty  experienced  is one miss in
cache for  every sequence of  L instructions that  were
selected to be locked, where L is the cache line size.

The complexity of the described behaviour for  the
proposed locking cache is simpler than that provided by
current,  high-performance,  commercial  processors,  so
implementation issues are not expected. Nonetheless, in
order  to  have  the  desired  behaviour  without
compromising the operation time (which should remain



identical to the one provided by a conventional cache)
the  design  of  the  locking  cache  memory  must  be
performed very carefully.

4. Main memory requirements

The success of the proposed use of dynamic locking
cache relies also on the main memory ability to embed
information related to whether lock or not its contents.
The system designer must add the value of the LSFs
somehow in the tasks instructions. Embedding this flag
is the major issue of the proposed schema. Following,
several alternatives are described:

1. Embed  the  LSF  in  the  instruction  op  code.  This
proposal poses many problems, since the  designer
has to  face the need to modify the instruction set
repertory, and hence, the processor decoding stage.
Furthermore,  sometimes  it  is  not  possible  to
accomplish  this  in  a  simple  manner,  i.e.  by  just
rearranging  the  bits  for  example;  in  those  cases
where every combination of bits is already used, it is
mandatory to increase the processor instruction word
size, which might lead in turn, to wider data buses.
Additionally, it also requires modifying the compiler
back-end.

2. The next approach is more software-oriented. Since
the  blocks  to  lock  are  known  beforehand,  it  is
feasible  to  embed  some  sort  of  header  at  the
beginning  of  the  binary  image  with  the
corresponding map of blocks that should be loaded
and  locked  for  every  task:  if  a  task  occupies  m
blocks of main memory, it requires a map of size m
bits, plus some delimiter to mark the beginning and
end of each map; if a bit is set,  it  means that  the
block must be locked into the cache and not loaded
into  cache  otherwise. The  main  advantage  of  this
proposal is that  it  requires a  minimum amount  of
storage. Its main disadvantage is that every time the
processor fetches an instruction, the cache memory
controller needs to access the map, which represents
a delay. This delay, however, would be shorter if the
map is stored in some sort of look-aside memory; in
case the whole memory map does not  fit  into the
look-aside  memory,  this  schema  may  introduce
significant  lack  of  determinism  and  increase  the
complexity of schedulability analysis.
In  addition,  the  implementation of this alternative
would  require  modifications in  the  compiler  back
end, the linker, and the loader.

3. Increase the memory size word by one bit,  which
will  store the  Instruction  Lock  State  Flag,  ILSF.
Each ILSF is adjusted when the program is loaded
into  main  memory;  if  it  is  set,  it  means that  the
corresponding instruction must be locked. Whenever
the processor fetches an instruction, the ILSF is also

copied  to  the  instruction  cache,  so  there  is  no
penalty involved in execution time.
The main disadvantage is that the data memory bus
between the main memory and cache memory has to
be  one  bit  wider;  also,  the  compiler,  linker,  and
loader  require  modifications.  Besides,  notice  that
space is wasted since in this schema, each instruction
has a corresponding bit, but just one bit is required
by every memory block; hence m ( L – 1 ) bits are
wasted, where  L is the number of instructions per
main memory block, and m is the number of blocks.

4. Use  a  memory  organization  following  the  layout
proposed  in  the  Stanford's  TORCH  [8].  In  this
architecture,  groups  of  eight  instructions  are
preceded  by  eight  extension  bytes  that  provide
information about dynamic instruction scheduling.
In  a  similar  vein,  it  is  possible to  group  together
some  instructions  into  a  parcel.  There  are  two
possibilities  in  terms  of  gathering  together  the
instructions: a) the number of memory blocks in a
parcel is constant and b) it is feasible to have parcels
of varying size. In any case, each parcel is preceded
by one  Locking  State  Word,  LSW,  which contains
the  locking  state  information  for  every  memory
block in the parcel. Each bit in the LSW determines
the  state  of  one  memory  block.  The  number  of
blocks per parcel cannot exceed the instruction word
size, w.
In this approach the main disadvantage is that every
time  that  there  is  a  cache  miss,  the  worst-case
penalty will be equal to two main memory accesses,
one to read the instructions and one more to read the
concerning  LSW.  Furthermore,  in  case  b),
calculating the LSW address requires an extra access
to a table to know the size of the current parcel. In
both  cases,  the  drawback  could  be  alleviated  by
caching the LSW into the cache controller but doing
so would require a more detailed WCET analysis to
get tighter results.
On the  processor side,  every datum located at  an
address  corresponding  to  an  LSW  should  be
considered as a no-operation instruction. In addition,
the compiler back end and maybe the linker, have to
suffer  considerable  changes to  patch  the  resulting
binary image.
Last,  but  not  least,  whenever the amount  of extra
information required per  instruction is substantial,
the TORCH approach has its merits; yet in this case,
for each main memory block just one bit is required.

5. This  approach  stems  from  a  combination  of  the
previous  two  and  provides  an  easy  to  model
architecture,  space  efficiency,  and  no  delays.
Furthermore, it does not require any modification in
the processing element, just in the memory system.
In this approach, an extra,  dedicated memory, the
Locking  State  Memory  (LSM),  is  added  to  the
memory subsystem. Its depth should be the same as



the number of memory blocks in the main memory
and its width may be one. However, in order to use
off-the-shelf 8-bit wide memories, the information
for eight blocks (comprised in 8 LSFs) will be stored
in one LSW. Hence, given a main memory of depth
dMM = mL,  where  m is the number of blocks, the
required LSM has depth, dLSM, equal to m / 8.
Let bI be the number of bytes per instruction, and L
the cache line size (then each memory block has  L
instructions). Each parcel has eight memory blocks,
so  an  LSW  has  information  for  eight  memory
blocks. 
Then the number of instructions, I, that corresponds
to each LSW is given by I = 8L. The address of any
LSW, aLSW, is such that aLSW mod I = 0.
Now, every time that an instruction, Ir, at address ar

is referenced, the cache memory controller,  at  the
same time, has to access the memory system and the
LSM, to check the LSW at address aLSWr,  which is
the address of the LSW that corresponds to mr, the
memory block that  stores  Ir.  aLSWr is obtained  by
stripping off the Log2 IbI least significant bits of ar.
Finally, it is necessary to extract the corresponding
LSF within the LSW to determine whether to load
and lock the memory block or not; it is given by the
3 bits to the left of the Log2 LbI bits of ar.
In order to keep the same operation time provided
by a conventional cache system, it  is necessary to
add an extra line to the cache memory data bus to
carry the  locking state  information.  On  the  other
hand,  only  one  8-way  multiplexer  and  some
decoding stage is needed to address the LSM.

5. Conclusions and Future Work

Automating the locking process in the dynamic use
of the locking cache offers, in an intuitive way, faster
execution  times.  Unfortunately  it  is  not  so  easy  to
provide  the  necessary  mechanisms  to  embed  the
required  information  about  locking  states  into  the
program  code  since  many  components,  both  on  the
hardware and on the software areas might be involved:
on  one  side,  the  locking  cache  structure,  the  main
memory organization, the data bus width, and even the
processor itself;  on the  other  hand,  the compiler,  the
linker and the loader.

The  goal  to  pursue  in  the  design  of  the  memory
system is then to incorporate this information without
increasing the memory requirements in terms of storage
efficiency, or slowing down the general operation of the
memory  hierarchy.  Furthermore,  the  processor  itself
should  not  have  significant  modifications  in  its
architecture.

The last approach illustrated seems very promising in
trying  to  adhere  to  the  previous  requirements.  The
resulting memory system has to be diligently tested and
verified by means of thorough analyses and simulations

and  at  the  end,  by its  implementation  on  an  FPGA.
Besides,  it  is necessary to  evaluate  the improvements
and the amount of resources involved in order to ponder
the cost-benefit of the proposed solution.
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