
High Performance Memory Architectures with Dynamic Locking Cache for
Real-Time Systems

E. Tamura1, F. Rodríguez2, J.V. Busquets-Mataix2, A. Martí Campoy2

1 Grupo de Automática y Robótica, Pontificia Universidad Javeriana - Cali, Cali, Colombia
eutamo@doctor.upv.es

2 Departamento de Informática de Sistemas y Computadores, Universidad Politécnica de
Valencia, Camino de Vera s/n, 46022 Valencia, España

{prodrig, vbusque,amarti}@disca.upv.es

Abstract

In modern computers, memory hierarchies play a
paramount role in improving the average execution
time. However, this fact is not so important in real-
time systems, where the worst-case execution time is
what matters the most. System designers must use
complex analyses to guarantee that all tasks meet
their deadlines. As an alternative to making those
complex analyses, it is proposed to build a memory
hierarchy such that it provides high performance
coalesced with high predictability. At the same time,
the memory assist should imply small-scale
modifications in the hardware. The solution is to be
centred on instruction fetching since it represents the
highest number of memory accesses.

1. Introduction

Cache memories are extensively used to reduce the
increasing speed gap between processor and main
memory because they provide lower average execution
times by minimising the number of accesses to main
memory. However, their use in real-time systems arises
hard problems in calculating the Worst Case Execution
Time (WCET) because cache memories present a
dynamic, adaptive and non-predictable behaviour. This
lack of determinism precludes the use of well-known
schedulability analysis techniques in order to validate
the temporal correctness of the system. Several methods
and algorithms have been proposed to model the cache
behaviour and include it in the WCET [1], and to take
into account cache effects in the schedulability analysis
[2, 3]. As an alternative to cache modelling, other cache
schemas have been proposed to simplify the analysis,
like the use of locking caches [4]. Locking cache
presents several advantages:
• Implementation of locking cache is feasible and

presents no construction complexity
• Locking cache offers a fully predictable behaviour,

allowing the use of simple and well-known
techniques for schedulability analyses

• Performance of locking cache is similar to that of
conventional, non-predictable caches

Two ways of using locking caches have been
proposed: static use of locking caches [5] and dynamic
use of locking caches [6].

In static use of locking caches, cache contents,
determined via the use of a genetic algorithm, are
loaded and locked during system start-up, and those
contents will never change during system operation.
Since the static use of locking cache is fully predictable,
it is easy to analyse its behaviour.

On the other hand, in the dynamic use of locking
caches, cache contents are modified during system
operation in a controlled way. Every time a task begins
or resumes execution, cache is flushed and then
reloaded with a set of instructions belonging to the new
scheduled task. This set of instructions is always the
same for each task, so dynamic use of locking cache
presents not just a high degree of predictability, but at
the same time, it improves the performance of static use
of locking cache [7] because each task may use all of the
space available in the whole cache for its own
instructions, while in static use the cache space is shared
by all of the tasks.

Furthermore, in more than 210 experiments with
assorted caches –varying parameters like cache size, line
size, degree of associativity, miss and hit times-- and
several sets of tasks, the dynamic use of locking caches
provided the same or better performance than
conventional caches in about 60% of the tests [6]; in
some cases, however, performance falls significantly.
This loss of performance is due to the cost of loading
and locking the cache contents every time a task begins
or resumes its execution. The cost of loading and
locking one memory block in cache is about five times

A
Proceedings of the 16th Euromicro Conference on Real-Time Systems Work in Progress. Pages 1-4. Catania, Italy, June 2004.

the time needed to transfer a block from main memory
to cache in a conventional cache, because the load is
accomplished trough the execution of a small routine,
which is included in the scheduler.

This paper explores several memory architectures in
order to load and lock the cache via hardware
mechanisms, reducing so the time needed to load each
block. To load and lock memory blocks automatically
demands modifications both in main memory
organization as well as in cache memory.

2. Rationale

The system operation of dynamic use of locking
cache as proposed in [6] is the following:

Every time the operating system schedules a new
task, a small routine is executed. This routine reads
from main memory the predefined set of addresses
whose contents must be loaded in cache, and then loads
the blocks associated to them; each block has the same
size as the cache line size. After all of the blocks have
been loaded, the locking cache is locked and the task
begins/resumes execution. Both load and lock
operations are accomplished through cache-
management instructions.

This way of operation is inefficient mainly due to
two reasons: first, several accesses to main memory are
required for each block of main memory that must be
transferred to cache, imposing a significant overhead.
Second, the new task can not be dispatched immediately
after it is ready to execute, suffering a significant
latency because all of its to-be-locked blocks must be
loaded before it begins/resumes execution.

In order to improve the performance of dynamically
locking cache, two basic requirements must be satisfied:
a) Main memory blocks must be transferred to cache

when fetched by the processor. That is, instructions
will be loaded and locked in cache, as the control
flow of the program requires them without invoking
any piece of extra code.

b) The latter implies that the cache memory controller
must be able to identify the instructions to be locked
in an automatic way. Blocks –belonging to any task-
to be locked in cache must be marked before the
system begins execution, during system design or
system start-up.

Should the previous requirements hold, task
execution will begin as soon as possible since there is no
penalty involved by load and lock instructions, and
there are no delays involved in identifying the blocks to
be locked.

3. Cache memory requirements

Several commercial processors include locking

caches in their memory hierarchies, but to the authors
knowledge there is no one adequate enough to achieve
the characteristics needed to get a predictable and high
performance cache schema. The most interesting is the
IDT 79RC64574 family of standalone processors, that
include a two-way set associative cache with a locking
mechanism which can be enabled/disabled on a per-line
basis. This is all that is needed for static use of locking
cache, where the instructions locked in cache will never
change. In the dynamic use of locking cache however,
every time a new task is scheduled to run, cache
contents must be reloaded from main memory. With a
locking cache like the one provided in the IDT, it would
be necessary to execute a small loop that writes the tag
of each cache line, hence delaying task execution. So, in
order to get the maximum performance, the following
characteristics are proposed for a locking cache:
• Cache should be locked in a per-line basis. That is,

the system designer should be able to select the main
memory block to be loaded in each cache line.
Albeit, the whole cache must be locked to guarantee
predictability.

• Every cache line includes an extra bit named Lock
State Flag (henceforth, LSF), to signal whether the
cache line is locked or not. If any cache line is
locked, its content will not be replaced; otherwise,
its behaviour is the same as that of a non-locking
cache.

• The LSF is automatically adjusted when the
processor fetches the block since the value of the
LSF is somehow embedded in the instruction stream
read from main memory.

• By executing a processor instruction the LSF is
cleared for all the cache lines simultaneously,
unlocking the entire cache in one operation. This is
the only mechanism available to a programmer to
clear the LSFs.

• There exists a temporal buffer –or prefetch queue--
with size equal to one cache line and same behaviour
than a conventional cache. This buffer improves
execution time of non-locked instructions by taking
into account the spatial locality of non-locked
memory blocks.

When the scheduler dispatches a new task or
resumes the execution of a pre-empted task, it only
needs to clear the LSF of every cache line. After this,
the cache is loaded and locked as instructions are
fetched; the only penalty experienced is one miss in
cache for every sequence of L instructions that were
selected to be locked, where L is the cache line size.

The complexity of the described behaviour for the
proposed locking cache is simpler than that provided by
current, high-performance, commercial processors, so
implementation issues are not expected. Nonetheless, in
order to have the desired behaviour without
compromising the operation time (which should remain

identical to the one provided by a conventional cache)
the design of the locking cache memory must be
performed very carefully.

4. Main memory requirements

The success of the proposed use of dynamic locking
cache relies also on the main memory ability to embed
information related to whether lock or not its contents.
The system designer must add the value of the LSFs
somehow in the tasks instructions. Embedding this flag
is the major issue of the proposed schema. Following,
several alternatives are described:

1. Embed the LSF in the instruction op code. This
proposal poses many problems, since the designer
has to face the need to modify the instruction set
repertory, and hence, the processor decoding stage.
Furthermore, sometimes it is not possible to
accomplish this in a simple manner, i.e. by just
rearranging the bits for example; in those cases
where every combination of bits is already used, it is
mandatory to increase the processor instruction word
size, which might lead in turn, to wider data buses.
Additionally, it also requires modifying the compiler
back-end.

2. The next approach is more software-oriented. Since
the blocks to lock are known beforehand, it is
feasible to embed some sort of header at the
beginning of the binary image with the
corresponding map of blocks that should be loaded
and locked for every task: if a task occupies m
blocks of main memory, it requires a map of size m
bits, plus some delimiter to mark the beginning and
end of each map; if a bit is set, it means that the
block must be locked into the cache and not loaded
into cache otherwise. The main advantage of this
proposal is that it requires a minimum amount of
storage. Its main disadvantage is that every time the
processor fetches an instruction, the cache memory
controller needs to access the map, which represents
a delay. This delay, however, would be shorter if the
map is stored in some sort of look-aside memory; in
case the whole memory map does not fit into the
look-aside memory, this schema may introduce
significant lack of determinism and increase the
complexity of schedulability analysis.
In addition, the implementation of this alternative
would require modifications in the compiler back
end, the linker, and the loader.

3. Increase the memory size word by one bit, which
will store the Instruction Lock State Flag, ILSF.
Each ILSF is adjusted when the program is loaded
into main memory; if it is set, it means that the
corresponding instruction must be locked. Whenever
the processor fetches an instruction, the ILSF is also

copied to the instruction cache, so there is no
penalty involved in execution time.
The main disadvantage is that the data memory bus
between the main memory and cache memory has to
be one bit wider; also, the compiler, linker, and
loader require modifications. Besides, notice that
space is wasted since in this schema, each instruction
has a corresponding bit, but just one bit is required
by every memory block; hence m (L – 1) bits are
wasted, where L is the number of instructions per
main memory block, and m is the number of blocks.

4. Use a memory organization following the layout
proposed in the Stanford's TORCH [8]. In this
architecture, groups of eight instructions are
preceded by eight extension bytes that provide
information about dynamic instruction scheduling.
In a similar vein, it is possible to group together
some instructions into a parcel. There are two
possibilities in terms of gathering together the
instructions: a) the number of memory blocks in a
parcel is constant and b) it is feasible to have parcels
of varying size. In any case, each parcel is preceded
by one Locking State Word, LSW, which contains
the locking state information for every memory
block in the parcel. Each bit in the LSW determines
the state of one memory block. The number of
blocks per parcel cannot exceed the instruction word
size, w.
In this approach the main disadvantage is that every
time that there is a cache miss, the worst-case
penalty will be equal to two main memory accesses,
one to read the instructions and one more to read the
concerning LSW. Furthermore, in case b),
calculating the LSW address requires an extra access
to a table to know the size of the current parcel. In
both cases, the drawback could be alleviated by
caching the LSW into the cache controller but doing
so would require a more detailed WCET analysis to
get tighter results.
On the processor side, every datum located at an
address corresponding to an LSW should be
considered as a no-operation instruction. In addition,
the compiler back end and maybe the linker, have to
suffer considerable changes to patch the resulting
binary image.
Last, but not least, whenever the amount of extra
information required per instruction is substantial,
the TORCH approach has its merits; yet in this case,
for each main memory block just one bit is required.

5. This approach stems from a combination of the
previous two and provides an easy to model
architecture, space efficiency, and no delays.
Furthermore, it does not require any modification in
the processing element, just in the memory system.
In this approach, an extra, dedicated memory, the
Locking State Memory (LSM), is added to the
memory subsystem. Its depth should be the same as

the number of memory blocks in the main memory
and its width may be one. However, in order to use
off-the-shelf 8-bit wide memories, the information
for eight blocks (comprised in 8 LSFs) will be stored
in one LSW. Hence, given a main memory of depth
dMM = mL, where m is the number of blocks, the
required LSM has depth, dLSM, equal to m / 8.
Let bI be the number of bytes per instruction, and L
the cache line size (then each memory block has L
instructions). Each parcel has eight memory blocks,
so an LSW has information for eight memory
blocks.
Then the number of instructions, I, that corresponds
to each LSW is given by I = 8L. The address of any
LSW, aLSW, is such that aLSW mod I = 0.
Now, every time that an instruction, Ir, at address ar

is referenced, the cache memory controller, at the
same time, has to access the memory system and the
LSM, to check the LSW at address aLSWr, which is
the address of the LSW that corresponds to mr, the
memory block that stores Ir. aLSWr is obtained by
stripping off the Log2 IbI least significant bits of ar.
Finally, it is necessary to extract the corresponding
LSF within the LSW to determine whether to load
and lock the memory block or not; it is given by the
3 bits to the left of the Log2 LbI bits of ar.
In order to keep the same operation time provided
by a conventional cache system, it is necessary to
add an extra line to the cache memory data bus to
carry the locking state information. On the other
hand, only one 8-way multiplexer and some
decoding stage is needed to address the LSM.

5. Conclusions and Future Work

Automating the locking process in the dynamic use
of the locking cache offers, in an intuitive way, faster
execution times. Unfortunately it is not so easy to
provide the necessary mechanisms to embed the
required information about locking states into the
program code since many components, both on the
hardware and on the software areas might be involved:
on one side, the locking cache structure, the main
memory organization, the data bus width, and even the
processor itself; on the other hand, the compiler, the
linker and the loader.

The goal to pursue in the design of the memory
system is then to incorporate this information without
increasing the memory requirements in terms of storage
efficiency, or slowing down the general operation of the
memory hierarchy. Furthermore, the processor itself
should not have significant modifications in its
architecture.

The last approach illustrated seems very promising in
trying to adhere to the previous requirements. The
resulting memory system has to be diligently tested and
verified by means of thorough analyses and simulations

and at the end, by its implementation on an FPGA.
Besides, it is necessary to evaluate the improvements
and the amount of resources involved in order to ponder
the cost-benefit of the proposed solution.

6. References

[1] F. Mueller, “Timing Analysis for Instruction Caches”,
Real-Time Systems Journal, 18(2-3), Kluwer Academic
Publishers, Boston, USA, May 2000, pp. 217-247.

[2] J.V. Busquets-Mataix, J.J. Serrano, R. Ors, P. Gil, and
A. Wellings, “Adding instruction cache effect to
schedulability analysis of preemptive real-time systems”, In
Proceedings of the 1996 Real-Time Technology and
Applications Symposium, IEEE Computer Society, Boston,
USA, June 1996, pp. 204-213.

[3] C.G. Lee, J. Hahn, Y.M. Seo, S.L. Min, R. Ha, S. Hong,
C. Y. Park, M. Lee, and C. S. Kim, “Analysis of Cache-
Related Preemption Delay in Fixed-Priority Preemptive
Scheduling”, IEEE Transactions on Computers, 47(6), IEEE
Computer Society, Los Alamitos, USA, May 2000, pp. 217-
247.

[4] A. Martí, A. Perles, and J.V. Busquets-Mataix, “Using
Locking Caches in Preemptive Real-Time Systems”, In
Proceedings of the 12th Real-Time Congress on Nuclear and
Plasma Sciences, IEEE Computer Society, Valencia, Spain.
June 2001, pp. 157-159.

[5] A. Martí, A. Perles, and J. V. Busquets-Mataix. "Static
Use of Locking Caches in Multitask Preemptive Real-Time
Systems" In IEEE/IEE Real-Time Embedded Systems
Workshop (Satellite of the 22nd IEEE Real-Time Systems
Symposium), London, UK, December 2001.

[6] A. Martí, A. Perles, and J.V. Busquets-Mataix,
"Dynamic Use Of Locking Caches In Multitask, Preemptive
Real-Time Systems", In Proceedings of the 15th World
Congress of the International Federation of Automatic
Control, Elsevier Science, Barcelona, Spain. July 2002.

[7] A. Martí, S. Sáez, A. Perles, and J.V. Busquets-Mataix,
"Performance Comparison of Locking Caches under Static
and Dynamic Schedulers", In Proceedings of the 27th
IFAC/IFIP/IEEE Workshop on Real-Time Programming,
IFAC/IFIP/IEEE, Lagow, Poland, May 2003.

[8] M. Smith, M. Horowitz, and M. Lam, "Efficient
Superscalar Performance Through Boosting", In
Proceedings of the 5th International Conference on
Architectural Support for Programming languages and
Operating Systems, ACM/IEEE, Boston, USA, October
1992, pp. 248-259.

This work is supported by the Comisión Interministerial de
Ciencia y Tecnología under project CICYT DPI 2003-08320-C02-
01

