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Abstract — Locking cache is a practical alternative to
conventional caches in real-time systems. With similar
performance than conventional caches, a locking cache
allows a simple, accurate schedulability analysis. This work
presents a new application of the locking cache. Along the
modern trend to design Systems-On-a-Chip (SOCs) in which a
single IC, usually a programmable device like an FPGA, is
designed with one or more microprocessors and peripherals,
a locking cache is used to reduce the cache size to the
minimum that satisfies the system schedulability. Although
results are not as good as the authors expected, the developed
technique is promising, and future work may lead to very
interesting cost reductions in the size of the memory hierarchy
of reai-time systems while maintaining their schedulability
properties.
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1 Introduction

The choice of a processor for the design of a strict real-
time system is a complex problem. The designer must
estimate the performance required for the fasks to run
meeting their respective deadlines. Once the architecture is
selected and the system tasks developed, the designer is
challenged to verify the system schedulability by any of the
usual methods (static analysis, simulation, monitored
execution, etc.) [1].

If the test result is negative, i.e. tasks do not meet their time
constraints, the designer must modify the tasks to reduce its
response time, or choose a new more powerful processor to
meet the deadlines of all the tasks.

Choosing a processor with more than enough performance to
start the design may seem like a good idea, but it is a way to
increase the system cost that, in some cases, may not be
acceptable.  Using a processor with  architectural
enhancements such as speculative execution, cache

memories, branch prediction, etc. is a good way to achieve
higher performance while maintaining the system cost
bounded. However, these architectural improvements present
a behavior difficult to predict and extremely complex to
analyze, which often represents an insurmountable
complexity in the schedulability analysis of the real-time
system that forces the designer to discard them.

The ability to implement custom processors in FPGAs or
ASICs has partly simplified the choice of the processor for a
real-time system [2]. With these tools, it is possibie to build a
system with its performance adjusted to the actual
requirements, decreasing the cost of the resulting system.
What’s more, the designer can incorporate those architectural
improvements that interest he most, choosing those with an
affordable complexity analysis and a significant increase in
performance.

This paper presents a proposal for the use of locking cache
memories to ensure that the system is schedulable, but
maintaining, on the one hand, the simplicity of the
schedulability analysis, and on the other hand, the system cost
as low as possible in terms of memory hierarchy. This
proposal is most attractive to the designer of ad-hoc
processing systems implemented in programmable logic
devices like FPGAs.

1.1 Cache memories

Conventional cache memories are one of the most
effective ways to enhance the performance of a system [3].
But three problems make their use unattractive in real-time
systems:

- Their behavior is difficult to predict, and although there are
a large number of publications on this area [4], the
complexity of these techniques make their use exiremely
difficult in real applications.

- The cost of the memory used to build the cache is very high,
which makes their use not recommended in systems where
the final price is a determining factor.
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- The cache memory has to be very close to the processor to
get the best performance results, which in practice compels
the designer to implement it into the same silicon die, or
inside the same FPGA in which the CPU is located. This can
significantly increase the cost and complexity of development
process if the cache size is relatively large. )

1.2 Locking cachés

The basic operation of a locking cache memory is
simple: a set of selected blocks from main memory are loaded
and locked into the cache memory, and a locking mechanism
prevents the cache content replacement. Since there are no
changes in the contents of the cache, and these contents are
chosen at design time, the location of every instruction —
cache or main memory— is fixed and a-priori known, so it is
its execution time. Thus it is possible to use well-known
techniques to estimate the execution and response times of all
the tasks, easing the schedulability analysis required for real-
time systems.

There are multiple variants of the use of locking cache
memories in real-time systems [5, 6, 7, 8, 9, 10]. The most
basic form is called static locking. In this technique, a subset
of the system memory is chosen to be loaded and locked into
the cache memory, remaining there for the lifetime of the
system. Other techniques are generically called dynamic
locking, since the content locked in cache can be changed
during the system runtime, provided that the replacement
happens at fixed or known points to maintain the simplicity
of the schedulability analysis.

Although static locking delivers worst performance results
than dynamic locking techniques [11], several reasons exist
that have decided the authors in favor of the static locking
technique for the proposal presented here:

- Dynamic locking needs additional hardware, and in some
cases an additional memory, to manage the cache contents
replacement in a controlled way. Since the aim of this work is
to reduce the hardware required by the resulting system it
seems appropriate to use the technique which requires no
additional hardware.

- With the use of the static locking technique the selected
instructions have to be loaded and locked into the cache
before the system starts execution. In those cases where the
system is implemented in a FPGA or similar programmable
device the cache contents can be "hard-coded" in the design
and so the cache controller may be greatly simplified (as there
is no need to replace its content). This by no means would
require a hardware re-design or re-synthesis if the code of the
tasks needs modification. For example, the ISE Design Suite
software used to program Xilinx FPGA devices offers the
possibility to modify the contents of the memory blocks
inside the FPGA working directly with the bitstream (the file
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to download into the FPGA) at the very last step of the design
process.

In any case, to achieve the best possible performance with the
locking cache, two techniques are used simultaneously:

- To exploit spatial locality for those instructions not loaded
into the cache (which produce cache misses at runtime) and
reduce the number of memory transfers, a prefetch buffer is
included into the cache controller. This buffer has a size equal
to a single cache line and allows the system to transfer
instructions using bursts of the same length as if a
conventional cache memory were used.

- A genetic algorithm is used to perform the selection of
those blocks from main memory that have to be loaded into
the locking cache.

2 Searching the minimal cache size

The proposal presented in this article is based on the
results obtained in previous research works. These results
showed that when the size of the system, measured in terms
of the memory occupied by the instructions of the tasks, was
significantly larger than the size of the cache memory, the
performance of the system with a locking cache was far better
than using a conventional cache. This suggests that it is
possible to maintain the schedulability of the real-time system
(with a cache with its content locked at runtime) while
reducing significantly the size of the cache memory size.

In those previous works about locking caches, the selection of
the blocks to be loaded was performed using a genetic
algorithm or a greedy algorithm. The goal of both algorithms
was to select a set of blocks to guarantee the system
schedulability and, at the same time, to improve some system
performance parameter such as the system utilization or the
slack of the tasks.

However, the main goal for many real-time designers is to
guarantee that the system is schedulable only, with little or no
interest in optimizing the performance of the resulting
system. Therefore, although the use of a cache memory of
minimal size produce a performance loss, savings in energy
consumption and system costs compensate it.

The algorithms used to decide the set of blocks which must
be loaded into the locking cache use multiple input
parameters. These parameters include information about the
tasks of the real-time system, about the temporal
requirements of the system, and of course, information about
the locking cache.
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One of these input parameters is the size of the cache
memory, precisely a piece of information that in this work
should not be an input parameter but a result of the algorithm,
as 1n this case the goal is the search of the minimum locking
cache size that guarantee the schedulability of the real-time
system. Therefore, selection algorithms must be- modified to
produce this value instead of requiring it as an input.

However, before facing the change of the search algorithms,
the authors have preferred to conduct a study to verify that
the use of a static locking cache memory allow the reduction
of the cache memory size of schedulable real-time systems.

3 Experiments

3.1 Experiments description

The goal of the experiments carried out is to determine
what is the minimum size of the cache memory required to
guarantee a real-time system is schedulable, using both a
conventional cache and static locking cache. To perform
these experiments the following elements have been used:

- 13 sets of tasks have been developed. Each task set is
composed by a number of tasks ranging from 3 to 8 tasks.
The code for each task has been synthetically created and
may contain sequential code, loops, nested loops, if-then-else
conditional structures and any combinations of these,

- The processor used is a MIPS R2000 and the following
cache characteristics are assumed: a cache line size of 16
bytes (4 32-bit wide instructions). Fetching an instruction
from cache takes 1 cycle while fetching an instruction from
main memory takes 10 cycles. The mapping functions used
for the conventional cache are direct, 2-way set-associative,
4-way set-associative and full associative. The mapping
function for the locking cache is only direct-mapping,
because this one is the most restrictive for the locking cache,

- To estimate the response time for the tasks using a
conventional cache, a modified version of the SPIM simulator
(a freely available, widely used MIPS simulator) has been
used. Cache effects can be analysed without interference
since the simulator does not include any architectural
enhancement. From the original version of SPIM,
modifications include the simulation of a parametric (size,
mapping) cache.

- The genetic algorithm described in has been used to
estimate the response time for the tasks when using a static
locking cache.

Two factors may have a decisive impact on the performance
of a system using a cache memory, with or without locking,
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The first factor is the structure of tasks code: the use of large
sequences of sequential instructions, small nested loops, etc.
The second factor is the number of expulsions the tasks suffer
at runtime due to higher priority tasks; this affects the tasks
response times and the overall utilization of the system.

The structure of the tasks has been taken into account at the
time the synthetic tasks were created, making use to different
control flow mechanisms. The number of expulsions has been
included when two real-time systems originate from the same
task set.

Each task set produce 2 different (called type A and type B)
real-time systems to schedule for a total of 26 systems. A
fixed-priority preemptive scheduler is used in every case
where the task priority is assigned according to a Rate
Monotonic policy. Also, notice that it is assumed that the

deadline for a given task, D, is equal to the task period, T.

Type A and type B systems originating from the same task set
differentiate in the periods assigned to the tasks only. Tasks
priorities are the same in both cases, but in the type A
systems the periods are sufficiently large to achieve an
overall system utilization below 50% when running on a
conventional cache of 4096 lines. Whereas in the type B
systems the periods of all tasks have been reduced, thus
increasing the number of expulsions experienced by the lower
priority tasks and therefore increasing the overall utilization
of the system above 90%, again with a conventional cache of
4096 lines.

The reason to use a 4096-lines cache as a reference is that for
any of the set of tasks created the sum of the sizes of the tasks
is less than 64Kbytes (4096 blocks of 16 bytes, the size of a
cache line) so all systems run without cache misses (except
mandatory misses).

On the other hand, why use the same set of tasks with two
groups of different time periods is due to the results obtained
in previous works. In these studies a strong relationship was
found between the performance of the locking cache and the
sizes of the tasks and the cache itself,

Specifically, when the cache was very small compared to the
size of the tasks, the performance of a locking cache was
clearly better than the performance obtained using a
conventional cache, Conversely, when the size of the cache
was close to the sum of the sizes of the tasks, a locking cache
provided worse performance than a conventional cache,

The goal is that a given system requires different caches —in
terms of cache size— allowing the evaluation of the effect of
the cache size. Achieving such a goal is possible by
modifying the tasks periods and therefore the system
utilization because to maintain the utilization below 100% (a
requirement for the system to be schedulable) it will be
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necessary to reduce the execution time of the tasks of the
system, reduction that can be obtained increasing the size of
the available cache.

Once the tasks for the real-time systems have been created (a
total of 13 sets of tasks, each using two sets of periods for a
total of 26 systems), the experiments have been carried out
this way:

To find the minimum size required to schedule a system
using a conventional cache (Minimum Size of Conventional
cache, MSconv) these systems have been simulated using a
modified version of the SPIM simulator. This version of
SPIM gives as result, among other information, the execution
and response times of tasks, the overall utilization of the
system and an error message if any of the tasks misses its
deadline. Each system is simulated with all possible sizes of a
conventional cache ranging from a single line to 4096 lines,
until the minimum size that guarantees schedulability of the
system is found.

To find the minimum size required to schedule a system
using a static locking cache (Minimum Size of Locking
cache, MSlocking) a genetic algorithm has been run. The
genetic algorithm provides several results from the analyzed
system, including the overall system utilization, execution
and response times of all the tasks, and an error message if
the system is not schedulable. All these results are estimates
and represent a safe upperbound for the results that would be
obtained in the case the system were actually implemented
and the locking cache were filled with the blocks selected by
the genetic algorithm.

The number of executions, both the modified SPIM simulator
*and the genetic algorithm, required to obtain the results
presented below have been enormous, but this have been
antomated and reduced through the use of scripts that perform
2 binary search on the size of the cache memory.

3.2 Experimental resuits

Table 1 and Table 2 show the results for the 13 sets of
tasks and the two sets of periods with the column “Conv.
4096” containing the system utilization when a conventional
cache memory of 4096 lines is used to simulate the execution
of systems. These data allows comparing the effect of tasks
periods and system utilization on the performance of the
system using a locking cache.

Columns “Lines conv.” and “Lines lock.” show the minimum
cache size required o make the system schedulable for a
conventional and a static locking cache respectively. The
absolute difference between these two columns is shown in
the “Diff” column. Positive values indicate the locking cache
makes the system schedulable with a lower number of lines
than the conventional cache. Finally the percentage (“%)
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show the relative difference in percentage between “Lines
conv.” and “Lines lock.”. Positive values indicate a smaller
locking cache is required to schedule the system.

From Tables 1 and 2 the first conclusion is that for a total of
26 systems, the locking cache needs a lower number of lines
than conventional cache in 12 cases (46% of total
experiments). However, if results are studied as a function of
the type of periods, the locking cache beats the conventional
cache in 9 of 13 systems when the global utilization is below
50% (type A periods) and the conventional cache beats the
locking cache in 10 of 13 systems when global utilization is
over 90% (type B periods).

Type A periods

Task Conv. Lines Lines

set 4096  conv. lock. Diff %

1 0,35 544 261 283 52,02
2 0,35 549 302 247 44,99
3 0,44 436 450 -14 -3,21
4 0,36 75 105 -30 -40,00
5 0,38 156 150 6 3,85
6 0,32 448 161 287 64,06
7 0,41 488 372 116 23,77
3 0,35 380 400 =20 -5,26
9 0,29 89 14 75 84,27
10 0,28 96 4 92 95,83
11 0,34 3717 267 110 29,18
12 0,39 30 129 -49 -61,3
13 0,32 77 60 17 22,08

Table 1. Results for systems with periods Type A

Type B periods

Task Conv. Lines Lines

set 4086  conv. lock. Diff %o

1 0,96 2219 2313 -94 -4,24
2 0,98 3044 2870 174 5,72
3 0,93 954 1482  -528  -55,35
4 0,96 377 515 -138  -36,60
5 0,97 1414 1830  -466 -32,96
6 0,94 2932 2751 181 6,17
7 0,98 1727 3448 -1721 -99,65
8 0,93 1687 2300 -613  -36,34
9 0,98 572 711 -139 24,30
10 0,92 1567 1826  -259  -16,53
11 0,92 1831 1756 75 4,10
12 I 097 1012 2975 -1963 -193,97
13 0,95 534 1401 -867 -162,36

Table 2. Results for systems with periods Type B
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The effect of the type of periods applied is not definitive,
however. For example, for task set number 2, the locking
cache beats the conventional cache independently of the type
of periods while for task set number i2, the conventional
cache beats the locking cache in both cases. The reason of
this behavior is the structure of the tasks that form the System,
Tasks in set 12 include nested loops up to three levels while
tasks in set 2 have only one level of loops.

Figure 1 shows the distribution of reduction/increase
(percentage column) of lines needed to make the systems
schedulable. Again, positive values (columns on the right
side) indicate that the locking cache mechanism demands
smaller caches than conventional cache. Figure 2 and 3 show
the same frequency histogram, but grouping systems using
the type of periods.
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Figure 1. Frequency histogram for all 26 systems.

From Figure 1, we can observe that the reduction or increase
or lines needed by locking cache is similar (except for two
extreme systems). That is, systems designer may save cache
size or may spent more cache size, but in similar quantities.
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Figure 2. Frequency histogram for systems with type A

periods.

Figure 2 shows that the system designer will save more cache
memory and in more cases. When the locking cache needs
more lines than the conventional cache, this extra amount of
cache memory is usually small, lower than the saving for
those systems with cache reduction.
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Figure 3. Frequency histogram for systems with type B
periods.

Figure 3 shows the opposite results for cases to Figure 2.
When system utilization is very high, the locking cache will
need greater caches than conventional, and in more cases.
This increase is significantly larger than the cache saving in
those cases where locking cache behaves better than the
conventional cache.

Results are not excellent, but authors think the locking cache
may reduce the size of cache memory needed to make the
systems schedulable. The conclusion from a detailed analysis
is that the genetic algorithm used is to blame. This algorithm
is not designed to optimize the cache size which is the way it
has been used in this work. When the cache size is around the
limit to make the system schedulable, the genetic algorithm
behaves in an erratic way because the metrics used to
evaluate individuals are not available (global utilization and
response time of tasks). So it is clear that a specifically
designed genetic algorithm, or any other kind of algorithm,
may improve the results shown.

Also, there are dynamic ways to use a locking cache that have
demonstrated  better  performance compared  against
conventional caches. Those techniques require additional
hardware, but the cost of this extra hardware may be lower
than the cost of saved cache memory.

4 Conclusions and future work

Locking caches have been shown to be a real and
practical option to design real-time systems with the benefits
provided by a cache memory but without the drawbacks the
use of a conventional cache present when performing the
system schedulability analysis.

But this paper has presented a novel application of the use of
static locking caches. In systems where the hardware is
designed ad hoc, the use of static locking cache may help to
reduce costs and allow the designer to adjust the size of the
memory cache to the minimum required to guarantee the real-
time system is schedulable.
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A notable reduction of the cache memory size is possible
when the overall system utilization is low if a static locking
mechanism is used, as can be seen in the experiment results
of the majority of these cases. It is important to highlight that
over-dimensioning the cache size (and therefore reducing the
system utilization) is a common measure used in the design
of real-time systems to tackle the problems a conventional
cache imposes to the temporal reasoning of the system.

Future work offers three clear lines to be developed:

First, the design of a genetic algorithm to specifically find the
minimum memory size of the cache quickly, efficiently and
easily. The aim is to facilitate the work to the system
designer, so this new algorithm is a real need if the locking
cache is wanted to be of practical use. Moreover, this
algorithm could include secondary objectives. That is, in
addition to the minimum cache size the algorithm could also
reduce the system utilization or improve the slack of the
system tasks, within some given limits.

Second, a detailed analysis of the factors that results in the
locking cache requiring fewer or more lines than a
conventional cache. In this way, the system designer can
determine, with a priori knowledge of some characteristics of
the system, if the proposed technique is viable or not.

Finally, the evaluation of other, dynamic ways to use the
locking cache, and the effect on the.resulting performance of
the cache main characteristics apart from the memory size:
line size and hit and miss times.
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