
- 001 -

STATIC USE OF LOCKING CACHES VS. DYNAMIC USE
OF LOCKING CACHES FOR REAL-TIME SYSTEMS

A. Martí Campoy, A. Perles, F. Rodríguez, J.V. Busquets-Mataix
Dep. de Informática de Sistemas y Computadores. Univ. Politécnica de Valencia. Spain

{amarti, aperles, prodrig, vbusque}@disca.upv.es

Abstract

Locking caches are a useful alternative to standard
cache memories in order to reach both predictability and
high performance for multitasking, preemptive, fixed-
priority real-time systems. Two schemes of locking cache
are possible: static and dynamic use. Both schemas
present a high degree of predictability and like-cache
performance. But these two schemes are not equivalent.
Each one performs better for systems with particular
characteristics. This work show that static use presents a
greater degree of predictability than dynamic use, but
dynamic use offers better performance for the major part
of the cases. Systems are grouped as a function of the
relationship between cache size and code size, allowing a
fast and easy prediction about the gain or loss of
performance given by each use of locking caches.

Keywords: locking cache; schedulability analysis;
performance analysis; cache memories.

1. INTRODUCTION

Cache memories are widely used to reduce the speed
gap between processor and main memory. However, their
adaptive, dynamic and non-predictable behaviour
introduces several problems for their use on real-time
systems, where predictability is required. Several
solutions have been presented in order to deal with cache
memories in such systems. These solutions may be
grouped in analysis techniques [1,2,3,4], which
incorporate the cache effect into the schedulability
analysis; and design solutions [5,6], which propose new
cache architectures in order to achieve more predictable
cache architectures.

Locking caches belong to the second group. The
locking cache can be loaded with selected instructions
and then locked, precluding new allocations. Therefore,
execution time of each instruction is known a priori,
depending if the instruction is loaded in cache or not.

Locking cache may be used in two ways: static [7] or
dynamic [8]. Using the static schema, cache contents are
preloaded during the system start-up and it remains
unchanged for the entire system run. In dynamic use of
locking cache, cache contents are changed during system
execution, but only in specific points: in this proposal
when a task is preempted by another one.

In static use, all tasks compete for the cache space.
Cache is loaded with a merge of instructions from all
tasks. Once the cache is loaded and locked, its contents
remain unchanged. In dynamic use, every task may use
the whole cache space. When a task begins or resumes
execution after preemption, it loads and locks the cache
with its own instructions. The cache remains unchanged
until a new task is executed. For both static and dynamic
use, the execution time of instructions is constant (from
the poin of view of memory access), because an
instruction will be always or never in cache .

Both uses of locking cache offers several advantages
in front of conventional, adaptive and non-predictable
cache memories. Since execution time of instructions is
now constant, Worst Case Execution Time can be
estimated in a simple way, evaluating the longest path by
well-known algorithms. Several enhancements to this
estimation, like considering infeasible paths, may be
directly used; schedulability analysis may be
accomplished trough Cache Response Time Analysis
(CRTA), where cache-refill penalty is tight bounded and
known. Other architectural improvements, like
segmentation may be incorporated to the schedulability
analysis without regard to cache [2], since the execution
time of the instruction does not concern interactions
between locking cache and these schemes.

Instructions to be preloaded and locked in cache are
selected using a genetic algorithm [9]. This algorithm
gives, as results, the set of instructions to lock in cache,
the response time of each task in the system, and the
result of the schedulability analysis evaluating the
equation of CRTA.

However, static and dynamic use are not equivalents.
The following sections shows a comparison of both
schemas from two points of view: determinism and
performance.

CCECE 2003 – CCGE 2003, Montréal, May/mai 2003
0-7803-7781-8/03/$17.00 2003 IEEE

- 002 -

2. EXPERIMENTS

Results shown in next sections come from a set of
experiments, each one of them is composed of a set of
tasks and a definite cache size. The tasks used in the
experiments are synthetic created in order to stress the
locking cache and exercise the genetic algorithm used to
select the instructions to load and lock in cache. More
than 300 experiments have been defined. For each
experiment four kinds of runs have been performed:

- Executing the genetic algorithm for static use of
locking cache.

- Executing the genetic algorithm for dynamic use of
locking cache.

- Simulating the static locking cache.
- Simulating the dynamic locking cache.
Simulations are accomplished using the SPIM tool

[10], a MIPS R2000 simulator, and in all cases the
simulation comprises the entire hyperperiod. Using the
same set of experiments for both uses allows to make
very accurate analysis, since differences in results are due
to the schemes presented and not to difference on
experiments.

These runs give the response time of each task and
global system utilization. Global utilization is calculated
considering the worst case for all executions of tasks.
This way, global utilization is a safety upperbound of the
actual utilization.

3. COMPARISON OF DETERMINISM

The degree of determinism provided by locking cache
may be evaluated comparing the response time of each
task estimated by the genetic algorithm (Res for static use
and Red for dynamic use) in front of the response time
obtained from simulating the locking cache (Rss for static
use and Rsd for dynamic use). The error in estimating the
response time of tasks is defined as the quotient between
the estimated response time and the simulated response
time: Ss= (Res / Rss) –1 for static use and Sd= (Red / Rsd) –1
for dynamyc use. S show the overestimation in
percentage, and never can be negative since response
time estimated by the genetic algorithm is an upperbound
of actual response time when locking cache is used.

Figure 1 and Figure 2 show the histogram of
accumulated frequency for Ss and Sd respectively. Y-Axis
value is the percentage of tasks with S values lower than
x-axis value. Differences are clear. In static use, the error
in estimating response time never surpasses 1%, and for
more than the 50% of tasks the overestimation is below
0,01%. For dynamic use, near 50% of tasks present an
overestimation greater than 1%, and the maximum error
is near 40%. This relatively great overestimation in
dynamic use is due to cache-refill penalty. Although its

value is tightly bounded, a very small error may led to a
large overestimation if the task suffer a high number of
preemptions. However, in static use of locking cache its
contents never change, this way there is no cache-refill
related overestimation.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

10
,0
00
%

5,
00
0%

1,
00
0%

0,
50
0%

0,
10
0%

0,
05
0%

0,
01
0%

0,
00
9%

0,
00
8%

0,
00
6%

0,
00
4%

0,
00
2%

0,
00
1%

0,
00
0%

Ss

Ac
cu

m
ul

. F
re

qu
en

cy

Figure 1. Overestimation in response time of tasks for
static use.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

40
%

30
%

20
%

10
% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%

Sd

Ac
cu

m
ul

. F
re

qu
en

cy

Figure 2. Overestimation in response time of tasks for
dynamic use.

4. COMPARISON OF PERFORMANCE

Performance of static and dynamic use of locking
cache are compared using system utilization of each
experiment. All experiments have been designed to be
schedulable, so utilization is a good metric to evaluate, in
a global view, the gain or loss of performance of both
schemes.

Performance (P) represents the gain or loss of
performance obtained for each experiment by using
dynamically the locking cache in front of using statically
the locking cache. Performance is calculated as P = Us –
Ud, where U is the system utilization estimated by the
genetic algorithm (Us for static use and Ud for dynamic
use) for each experiment. Values of P over 0 indicate that
dynamic use offers better performance than static use,

- 003 -

since system utilization for the dynamic schema is lower
than the system utilization for the static schema.

Also, System Size Ratio (SSR) is defined as the
relationship between the cache size and the code size (as
sum of sizes of all tasks), calculated as SSR =
cache_size/system_size. Intuitively, this relationship is
the major factor in the behavior of performance shown by
locking cache.

Figure 3 shows the scatterplot of P in front of SSR (X-
axis in log scale). Data in this figure may be grouped in
three spaces with regard to values of SSR. First space,
called E1 comprises all experiments with SSR values
below 0,1. Second space, called E2 comprises
experiments with SSR values equal or greater than 0,1
and lower than 1. Finally, third space, called E3,
comprises experiments with SSR values equal or greater
than 1. Grouping experiments by SSR value allows a very
accurate analysis.

-0,20

-0,15

-0,10

-0,05

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,01 0,1 1 10SSR

P

Figure 3. Scatterplot of P= Us–Ud versus SSR.

4.1. Analysis for space E1

Experiments in space E1 has a very low ratio between
cache size and code size, that is, the cache is very small
in front of code size. As shown in Figure 3, dynamic use
presents better performance (lower utilization) for the
major part of cases. Since cache is very small, the number
of instructions reloaded after each preemption in dynamic
use is low, so the value of cache-refill penalty is low. In
the other hand, dynamic use presents lower WCET for all
tasks than static use since every task can use all the cache
space if necessary. Also, there is a soft-raising tendency
in P as SSR grows. Increasing cache size helps to
reducing the WCET of tasks, but the cache refill penalty
remain low since cache size is still low, so dynamic use
profits better from a slight grown in cache size. Table 1
shows a summary of statistics for space E1.

Table 1. Summary statistics for space E1.
Count 62
Average 0,0346298
Confidence interval (95%) [0,0193494;0,0499103]
Median 0,0124745
Variance 0,00362049
Standard deviation 0,0601705
Minimum -0,0328358
Maximum 0,246444
Lower quartile 0,00273985
Upper quartile 0,0358876
Interquartile range 0,0331477
(%) of cases with P > 0 53 (85,5%)

4.2. Analysis for space E2

Like the experiments in space E1, experiments in space
E2 shows better performance when locking cache is used
dynamically. However, in this space, there are more cases
with P values below 0 than in space E1, and negative
values are very large. Also, a clear descending tendency
in P is observed as SSR grows. In this space, cache size
grows until SSR values are very close to 1. The value of
cache-refill penalty for dynamic use is very high, since
tasks must reload, before begin or resumes execution, a
large number of instructions. This way, the reduction in
the WCET due to a large cache is cancelled out by the
cache-refill penalty.

Table 2 shows a summary of statistics for space E2. In
spite of the existence of a descending tendency shown in
Figure 3, experiments in space E2 presents, in general, a
greater gain of performance for dynamic use than the
experiments in space E1. This is shown in the values of
average, median, interquartile range and confidence
interval, all of them with greater values for E2, and the
percentage of cases where dynamic use presents a loss of
performance, negligibly greater.

Table 2. Summary statistics for space E2.
Count 84
Average 0,0403668
Confidence interval (95%) [0,0215822;0,0591515]
Median 0,0209883
Variance 0,00749262
Standard deviation 0,0865599
Minimum -0,188171
Maximum 0,313682
Lower quartile 0,00467018
Upper quartile 0,0506257
Interquartile range 0,0459555
(%) of cases with P > 0 68 (81,0%)

- 004 -

4.3. Analysis for space E3

Experiments in space E3 present a behavior very
different that previous spaces. In all cases, P values are
equal or lower than 0, that is, dynamic use of locking
cache offers worse performance than static use in all
cases. In this space, cache size is equal or greater than
code size, so in static use there is no mandatory or
conflict misses because locking cache is preloaded and
locked before system begins execution. However, in
dynamic use, cache contents are always reloaded before
each task begins or resumes its execution. The existence
of cache-refill penalty in dynamic use of locking cache
provides a worse performance that in static use, where
there is no cache-refill at all. Table 3 shows a summary of
statistics for space E3.

Table 3. Summary statistics for space E3.
Count 36
Average -0,0391734
Confidence interval (95%) [-0,0588615;-0,0194853]
Median -0,017381
Variance 0,00338587
Standard deviation 0,0581882
Minimum -0,227715
Maximum -0,0006855
Lower quartile -0,0411056
Upper quartile -0,0053433
Interquartile range 0,0357623
(%) of cases with P > 0 0 (0,0%)

5. CONCLUSIONS

Developed experiments in this work clearly show that
static use of locking cache is more predictable than
dynamic use. But this lack of predictability does not
represent any disadvantage for dynamic use because
dynamic use offers better performance in the major part
of the cases.

The schedulability analysis and the selection of the
cache contents use the same tools and present the same
complexity for both schemes, so the designer of real-time
systems will choose between the two schemas only with
regard to performance.

The comparison made in this paper shows that for
systems with cache size lower than code size, dynamic
use offers, in general, better performance –low
utilization- in front of static use. When cache size is close
to code size, still there is gain of performance using the
dynamic schema, but the probability to loss performance
rises as cache size is closer to code size. For systems with

cache size equal or greater than code size, static use
presents better performance than the dynamic schema,
this way, there is no advantage in using dynamically the
locking cache.

Acknoledgments

This work was supported in part by Comisión
Interministerial de Ciencia y Tecnología under project
CICYT-TAP 990443-C05-02 and Generalitat Valenciana
under project CTIDIA/2002/27.

References

[1] J. V. Busquets, J. J. Serrano, R. Ors, P. Gil, A. Wellings.
“Adding Instruction Cache Effect to Schedulability
Analysis of Preemptive Real-Time Systems,” IEEE Real-
Time Technology and Applications Symposium, pp. 271-
276, June 1996.

[2] C. A. Healy, R. D. Arnold, F. Mueller, D. Whalley and M.
G. Harmon. “Bounding Pipeline and Instruction Cache
Performance,” IEEE Transaction on Computers. Vol. 48,
no 1, pp. 53-70, February 1999.

[3] C. G. Lee, J. Hahn, Y. M. Seo, S. L. Min, R. Ha, S. Hong,
C. Y. Park, M. Lee, C. S. Kim. “Enhanced Analysis of
Cache-Related Preemption Delay in Fixed-Priority
Preemptive Scheduling,” Proc. of the 18th IEEE Real-Time
System Symposium, pp. 187-198, December 1997.

[4] S. S. Lim, Y. H. Bae, G. T. Jang, B. D. Rhee, S. L. Min, C.
Y. Park, H. Shin, K. Park, and C. S. Kim. “An Accurate
Worst Case Timing Analysis Technique for RISC
Processors.” Proc. of the 15th IEEE Real-Time Systems
Symposium, December 1994.

[5] D. B. Kirk. “SMART (Strategic Memory Allocation for
Real-Time) Cache Design,” Proc. of the 10th IEEE Real-
Time Systems Symposium, pp. 229-237, December 1989.

[6] Andrew Wolfe. “Software-Based Cache Partitioning for
Real-Time Applications,” Proceedings of the Third
International Workshop on Responsive Computer Systems,
September 1993.

[7] A. Martí Campoy, A. Perles Ivars and J. V. Busquets
Mataix. “Static Use Of Locking Caches In Multitask,
Preemptive Real-Time Systems,” Proceedings of the IEEE
Real-Time Embedded System Workshop, December 2001

[8] A. Martí Campoy, A. Perles Ivars and J. V. Busquets
Mataix. “Dynamic Use Of Locking Caches In Multitask,
Preemptive Real-Time Systems,” Proceedings of the 15th
World Congress of the International Federation of
Automatic Control, July 2002

[9] A. Martí Campoy, A. Perez Jimenez, A. Perles Ivars and
J.V. Busquets Mataix. “Using Genetic Algorithms in
Content Selection for Locking-Caches,” Proceedings of the
IASTED International Symposia Applied Informatics, pp.
271-276, February 2001

[10] Patterson, D. and J. L. Hennessy. Computer Organization
and Design. The Hardware/ Software Interface. San
Mateo: Morgan Kaufmann, 1994.

