
USING GENETIC ALGORITHMS IN CONTENT SELECTION FOR
LOCKING-CACHES

A. MARTÍ CAMPOY, A. PEREZ JIMENEZ, A. PERLES IVARS, J.V. BUSQUETS MATAIX
Department of Computer Engineering. Technical University of Valencia. SPAIN

{amarti, aperez, aperles, vbusque}@disca.upv.es

ABSTRACT

Modern processors include in their cache memories
the ability to preload and lock a set of instructions,
avoiding its replacement from cache. This ability may be
useful in real-time, multitask systems, where response
time of tasks must be a priori known. Locking cache
contents makes the system predictable, simplifying the
system analysis when calculating execution and response
time of tasks. As cache memories improve system
performance, real-time systems must take advantage of
the speedup given by these memories. Selection of
instructions to be loaded and locked in cache must be
carefully accomplished to obtain the best performance in
addition to predictability.

However, the estimations of the cost to load and lock
one instruction over the system response time is not easy
due to several factors. Direct search algorithm is ill
advised. Also, the size of the problem precludes the use of
exhaustive or random search. This paper presents the use
of genetic algorithm and its implementation to solve the
problem of selecting instructions to be loaded and locked.
Experimental results show that implemented algorithm
makes a well-directed search. Finally, partial experiments
show the usefulness of the presented cache-scheme in
real-time, multitask preemptive systems

KEYWORDS

Genetic algorithms, real-time, multitask, locking cache
memories.

INTRODUCTION

Cache memories clearly help to improve computer
performance. But its use in specific systems, like real-time
systems, presents several problems due to its
unpredictable behaviour. In real-time, multitask
preemptive systems, response time of tasks must be a
priori calculated in order to guarantee that all the tasks
finish execution before their deadlines. When instruction
cache memory is present, execution time of instructions
may change over executions, due to the dynamic
behaviour of cache. Estimating the response time of a
cached task presents two faces: first, calculating the Worst

Case Execution Time (WCET), because a task removes its
own instructions from cache, making no constant the
execution time of each instruction. This effect is called
intrinsic interference. Second, calculating the response
time of each task, because in a preemptive system, tasks
remove from cache other task’s instructions, increasing
the execution time of preempted task with regard to the
execution time without preemptions. This effect is called
extrinsic interference.

Several solutions have been presented to solve the
problem of using cache memories in real-time systems.
[1,2,3] present analytical methods to estimate the WCET
of a cached task. [4,5] present analytical methods to
estimate the response time of preemptive, multitask
cached systems. [6,7,8] present both hardware and
software solutions to eliminate the extrinsic interference.
But all the proposed solutions solve partly the problem:
the intrinsic interference or the extrinsic interference.

Modern processor offers the ability to preload and lock
the cache contents, which remain unchanged during
system operation. Since no new allocations in cache are
possible, both intrinsic and extrinsic interference are
eliminated. This allows the system designer to estimate
the response time of tasks in a simple way, using well
known analysis techniques, since execution time of
instructions is constant over executions, and preemptions
modify only the task response time, but not increase the
execution time by means of extrinsic interference.

However, cache improvement is due to its adaptive
behaviour. Locking instructions in cache makes the
system deterministic, but in order to obtain the best
performance, the preloaded and locked instructions in
cache must be carefully selected. The number of possible
solution for a specific combination of a set of tasks and
cache size may be very large, so an efficient algorithm is
necessary. This paper presents a solution to this problem,
using a genetic algorithm [9] to find with low temporal
cost a sub-optimal set of instructions to lock in cache. The
experimental results show that the algorithm fits this
problem, finding good solutions with a low temporal cost.
Also, partial experiments show the usefulness for real-
time systems of cache schema here presented.

a a
 Proceedings of the IASTED International Symposia Applied Informatics. pp. 271-276. Acta Press. Innsbruck, Austria February 2001

a a

PROBLEM DESCRIPTION

The cache scheme presented in this paper is a full-
associative instruction cache. This cache can be preloaded
and locked in a per block basis. A block is the minimum
unit of information that can be transferred from main
memory to cache. In this paper, size of block, also called
cache line, is sixteen bytes. Once the cache is preloaded
with the desired blocks, its content is locked, precluding
new loads in cache and the replacement of already loaded
blocks.

When the processor references an instruction
belonging a preloaded block, the instruction is served by
cache memory, like a cache hit in non-locked cache. If the
reference miss in cache, the entire block is transferred
from main memory to a buffer of one cache-line size.
Consecutive references to this block hit in the buffer, and
are served like a cache hit, until a new, non-preloaded
block is transferred to the buffer. With this cache schema,
execution time of each instruction is constant and well
known, therefore timing analysis of the entire system is
very easy.

Due to the different size of cache and tasks not all the
instructions can be loaded and locked in cache. Randomly
selecting instructions to load is enough to make the
system deterministic, but may reduce the system
performance, since loaded instructions execute faster than
the non-locked instructions. This way, an efficient
algorithm is needed to select a set of instructions to
preload in cache, obtaining the best possible performance
when using locking caches.

An exhaustive search, including branch and bound is
not possible due to the size of the problem. For example,
for a set of task with 5.000 instructions executing in a
cache of 2KB, represents more than 1050 different
solutions. This value invalidates any chance to exhaustive
or random search.

Since the response time of tasks depends on the
response time of higher priority tasks, it is not easy to
isolate an instruction to estimate the effect of locking it in
cache over the system response. Thus, a direct algorithm
to find the best set of instructions to load and lock may
have an intractable complexity, both in implementation
and temporal cost.

Genetic algorithm, which combines direct and random
search, fits well in this kind of problems. The next section
describes in detail the use of these algorithms to find a
sub-optimal solution to the presented problem.

DESCRIPTION OF THE GENETIC
ALGORITHM

The use of genetic algorithm in any search problem
requires the following elements and operators:

- A representation of the solutions, called codification.

- A function to evaluate the different solutions, called
fitness function.

- A selection-scheme in order to choose a subset of
solutions in order to create new solutions.

- Crossover and mutation operations used to transform
selected solutions in new solutions.

- Initialisation of the first set of solutions, and tuning the
parameters that govern the above operators.

Codification

The genetic algorithm works over a set of possible
solutions, each one called individual. The set of
individuals is called population. Let n be the number of
memory blocks occupied by all the tasks. The individual
is a binary vector of dimension n. If a bit is 1, the related
memory block is preloaded and locked in cache. If a bit is
0, it means that the related block is not loaded in cache.

Fitness function

The fitness function evaluates the goodness of each
individual. The fitness function may be the same that the
target function to optimise, but usually another function is
used instead of the target function, in order to improve the
response time or the way the algorithm explore the search
space. In the presented algorithm, the fitness function is
the weighted average of all tasks response time, while the
target function is the average of all tasks response time.

The response time of each task is calculated using the
Response Time Analysis. Since the cache contents are
unchanged during preemptions, no extensions are needed
to the RTA. The RTA needs the Worst Case Execution
Time of each task. The WCET of each task is calculated
using a single path analysis [10]. In this analysis, cache
effect is considered in the execution time of each
instruction in the following way:

- If an instruction belongs to a memory block loaded and
locked in cache, its execution time is Thit, time of
execution from cache.

- If an instruction belongs to a memory block not loaded
in cache and it is the first instruction in a block that the
program executes, its execution time is Tmiss, time of
execution from main memory.

- If an instruction belongs to a memory block not loaded
in cache and it is not the first instruction in a block the
program executes, its execution time is Thit, because this
instruction is loaded in the temporal buffer.

The equation 1 represents the calculation of fitness
function, where Ri is the response time of task Ti, and Ti

has a higher priority than task Tj if i < j.

Fitness =
1

2
4321

2

2..42
−

−+++++
n

n
n RRRRR

 [1]

The use of this fitness function is based on the
relationship between tasks. In a preemptive system,
response time of task Ti depends of its execution time and
the response time of higher priority tasks. Let consider
three tasks: T1, T2 and T3. T1 has the highest priority and
T3 the lowest. Locking in cache instructions of T3 reduces
its execution time and its response time, but do not affect
to T1 and T2. However, locking instructions of T1
reduces its execution time and its response time, but also
reduces response time of T2 and T3. This way, to avoid
that the entire cache will be assigned to the highest
priority task, the fitness function is weighted towards
lower priority tasks.

Selection-scheme

From the fitness function four types of results are
obtained:

- Finite average value, with number of locked blocks less
or equal to the cache size. This is a valid individual.

- Finite average value, with number of locked blocks
greater than cache size. This is a non-valid individual.

- Infinite average value, with number of locked blocks less
or equal to the cache size. Due to the large execution time
of tasks, some tasks never finishes its execution. This is a
very bad solution, but a valid individual.

- Infinite average value, with number of locked blocks
greater than cache size. This is a non-valid individual.

These four possibilities preclude the use of a fitness-
proportionate selection schema. Instead of it, rank-based
selection is used, where the probability of select one
individual is function of its position, and not of its fitness
value [11]. The individuals are arranged considering both
the fitness value and the number of locked blocks. Higher
positions are assigned to valid individuals, using the
fitness value (also for infinite values, where WCET is
used instead fitness to arrange two individuals with
infinite fitness values). The lowest positions are assigned
to non-valid individuals, arranged as function of the
number of locked blocks.

Crossover and mutation

Crossover is performed randomly choosing a gene that
divides the individual into two parts, and exchanging the
parts of both individuals, making two new individuals.
This process is repeated until the number of new
individuals makes equal the population size.

Crossover usually produces new individuals with
number of locked blocks greater than cache size. In order
to raise the probability of getting valid individuals in the
population, mutation is applied in three ways:

For individuals with number of locked blocks greater than
cache size, mutation randomly selects a set of locked
blocks and mark them as unlocked, reducing the number
of locked blocks. The resulting individual may have a
number of locked blocks that are greater, equal or lower
than cache size.

For individuals with number of locked blocks lower than
cache size, mutation randomly selects a set of unlocked
blocks and mark them as locked, increasing the number of
locked blocks. The resulting individual may have a
number of locked blocks greater, equal or lower than
cache size.

For individuals with number of locked blocks equal than
cache size, mutation randomly selects a set of pairs, each
pair with one locked block and one unlocked block, and
exchange them, leaving unchanged the number of locked
blocks.

Initial population and tuning parameters

Although a genetic algorithm can explore all the
search space through crossover and mutation, selecting
adequately the initial population may help the algorithm to
find a sub-optimal solution with a minor number of
iterations. In the presented problem, the best solution is an
individual with a number of 1’s equal to the cache size.
Due to the structure of tasks the best solution includes a
large sequence of consecutive 1’s. The population is
initialised with sequences of 1’s, randomly selecting the
beginning.

Other parameter settings are:

- Population size: 200

- Number of generations: 2000

- Probability of crossover: 0.6

- Probability of mutation for individual with number of
locked blocks equal to cache size: 0.01

- Probability of mutation for individual with number of
locked blocks distinct to cache size: 0.001

- Probability of selection of the highest ranked individual:
0.1

The parameter settings are based on results of several
preliminary runs. They are comparable to the typical
values mentioned in the literature [11].

EXPERIMENTAL RESULTS

This section reports the results of four experiments
that show that the genetic algorithm presented can find a
sub-optimal solution. The algorithm has been
implemented in C and executed in a medium range
personal computer, using Linux as operating System.
Execution time of algorithm depends on problem data,
because the RTA is an iterative algorithm. The number of
iterations of RTA depends on value of the WCET of each
task, and this value depends on the size of cache used for
the experiment. However, the execution time of genetic
algorithm never exceeds ten minutes.

The first experiment is formed by five tasks of similar
size. Only the lowest priority task is formed mainly by a
loop of 1000 iterations. This set of simple tasks allows
verifying the correctness of the algorithm. Table 1 shows
how the algorithm distributes the cache along the tasks,
loading and locking those memory blocks that reduce the
average execution time. The columns indicate the number
of cache lines assigned to each task.

Cache
size

Task 1 Task 2 Task 3 Task 4 Task 5

0.5 KB 0 0 0 0 32

1 KB 0 0 0 0 64

2 KB 0 0 0 0 128

4 KB 112 2 1 0 141

8 KB 175 169 27 1 141

16 KB 175 169 156 155 144

Table 1. Cache assignment for experiment 1.

For the set of tasks of experiment 1, only instructions
in task 5 profit from cache, because only these instructions
execute more than one time. While the cache size is
smaller than task 5 (2KB) the algorithm select instructions
from this task. When the cache size is greater than task 5
size, the algorithm selects instructions from the highest
priority tasks, following the selection in order of priority.
This is due to preemptions, so reducing the execution time
of high priority tasks reduces the response time of low
priority tasks. Notice that for task 5, a set of instructions
outside the loop is selected only when all the tasks fit in
cache.

Second experiment uses the same set of tasks than
experiment 1, but the fourth task is formed mainly by a
loop of 500 iterations. Task 5 remains unchanged from
experiment 1. Table 2 shows how the algorithm
distributes the cache along the tasks. In this experiment,
while the cache size is smaller than tasks size, the
algorithm selects instructions from task 4. Instructions in
task 4 benefit from cache because they are inside a loop,
and reducing its execution time will also reduce the
response time of task 5. But when cache size is greater
than the size of task 4, the algorithm selects instructions
from task 5, and not from task 1 like in experiment 1,
because instructions of task 5 are inside a loop.

Cache
size

Task 1 Task 2 Task 3 Task 4 Task 5

0.5 KB 0 0 0 32 0

1 KB 0 0 0 64 0

2 KB 0 0 0 128 0

4 KB 0 0 0 147 109

8 KB 175 47 2 147 141

16 KB 175 169 156 155 144

Table 2. Cache assignment for experiment 2.

Third experiment uses the same tasks than previous
experiments but each task is formed by a loop of 10
iterations. Table 3 shows the cache assignment for each
task. In this case, the algorithm selects first instructions
from the highest priority task, and follows in priority
order.

Cache
size

Task 1 Task 2 Task 3 Task 4 Task 5

0.5 KB 32 0 0 0 0

1 KB 63 1 0 0 0

2 KB 127 1 0 0 0

4 KB 172 83 1 0 0

8 KB 172 165 152 23 0

16 KB 172 169 156 151 144

Table 3. Cache assignment for experiment 3.

Fourth experiment is formed of three tasks. Tasks 1,
the highest priority task has two nested loops with a total
size about 3000 instructions. Task 2 is a single loop with a
if-then-else structure, with total size about 6000
instruction. Task 3, the lowest priority task is a single loop
with near 8000 instructions. Figure 1 shows the evolution
of the fitness function of the best individual for the 2000
iterations with a cache size of 16KB. For each iteration the
best individual presents a lower value than the best
individual of previous iteration. Only in some cases, more
frequently for last iterations, the new individual presents
no improvement. This is due to the fast convergence of

the algorithm, finding the best solution in the first
iterations.

3.940.000

3.990.000

4.040.000

4.090.000

4.140.000

4.190.000

4.240.000

4.290.000

1 61 121 181 241 301 361 421 481

Iterations

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Figure 1. Evolution of fitness function with 16KB of
cache.

Figure 2 shows the average response time for the set of
tasks of experiment 2 using several cache sizes. The labels
"direct”, “2-set”, “4-set” and “full” represent the average
response time for, respectively, a direct-mapped cache, a
two-set associative cache, a four-set associative cache and
a full associative cache. The label “estimated” represents
the average response obtained from the genetic algorithm,
and “simulated” shows the average response time using
the locking cache, loading and locking the set of memory
blocks selected by the genetic algorithm. The simulation
has been accomplished using an extended version of the
SPIM simulator [12].

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

1KB 2KB 4KB 8KB 16KB 32KB 64KB

Average Response Time

Cache size

Estimated
Direct
2-set
4-set
Full
Simulated

Figure 2. Average Response Time for experiment 2.

Figure 2 shows, firstly, that values given by the
genetic algorithm are an upperbound of the actual
response time using a locking cache (numerical values
resulting from the simulation of the locking cache are
99’9 % related to estimated values). Secondly, the
response time of locking cache is, in the worst cache,
lightly greater than the response time using conventional
caches, but in several cases the performance of the locking

cache is better. These results validate both the genetic
algorithm and the cache scheme, providing excellent
solutions. However, regarding the performance of locking
cache, more experiments must be accomplished, but this is
out of the scope of this paper.

CONCLUSIONS

This paper presents a genetic algorithm to select the
instruction to be loaded and locked in a locking cache.
The set of instructions selected provides the best possible
performance.

The algorithm described in this paper efficiently solves
the problem presented for the use of locking caches. Three
are the major advantages of the algorithm: first, the low
computational cost to find a sub-optimal solution. Second,
the algorithm well fits to parameters of the problem, as
structure of tasks or cache size. Third, the algorithm gives
both the set of memory blocks to load and lock and an
upperbound of the system response time. Thus, system
designer obtains simultaneously the set of instructions to
be loaded and the schedulability analysis.

The predictability given by the locking cache, together
with the algorithm, makes its use very interesting on
preemptive real-time systems, in contrast with the use of a
conventional cache. In the latter case, it is mandatory a
complex analysis to obtain an accurate estimation of the
response time of cached tasks.

At the moment, the algorithm neither uses information
about task structure nor problem parameters. Using a
more complex representation of the problem, including,
for example, number of iterations of each loop, could help
the algorithm to find the solution faster. Also, the
algorithm used to calculate the execution time of tasks, a
single path analysis, may be improved to get a more
accurate value.

The cache-scheme introduced in this paper may also
improve system performance, in addition to ensure the
predictability. Thus, response time of tasks is significantly
reduced for some cache sizes.

ACKNOWLEDGMENTS

This work was supported in part by the Comisión
Interministerial de Ciencia y Tecnología under project
CICYT-TAP 990443-C05-02

REFERENCES

[1] F. Mueller and J. Wegener. A Comparison of
Static Analysis and Evolutionary Testing for the
verification of Timing Constraints. Proc. of 4th IEEE
Real-Time Technology and Applications Symposium,
1998.

[2] S. S. Lim, Y. H. Bae, G. T. Jang, B. D. Rhee, S. L.
Min, C. Y. Park, H. Shin, K. Park, and C. S. Kim. An
Accurate Worst Case Timing Analysis Technique for
RISC Processors. Proc. of the 15th IEEE Real-Time
Systems Symposium, 1994.

[3] Y. S. Li, S. Malik, and A. Wolfe. Cache Modeling
for Real-Time Software: Beyond Direct Mapped
Instruction Caches. Proc. of the 17th IEEE Real-Time
Systems Symposium, 1996.

[4] J. V. Busquets-Mataix, A. J. Wellings, J.J. Serrano,
R. Ors and P. Gil. Adding Instruction Cache Effect to an
Exact Schedulability Analysis of Preemptive Real-Time
Systems. 8th Euromicro Workshop on Real-Time Systems,
1996, 8-15.

[5] C. Lee, J. Hahn, Y. Seo, S. L. Min, R. Ha, S. Hong,
C. Y. Park, M. Lee, C. S. Kim. Enhanced Analysis of
Cache-related Preemption Delay in Fixed-Priority
Preemptive Scheduling. Proc. of the 18th IEEE Real-Time
Systems Symposium, 1997.

[6] D. B. Kirk. SMART (Strategic Memory Allocation
for Real-Time Cache Design. Proceedings of the 10th
IEEE Systems Symposium, pages, 1989, 229-237.

[7] J. V. Busquets Mataix, J.J. Serrano, A.J. Wellings.
Hybrid Instruction Cache Partitioning for Preemptive
Real-Time Systems. 9th Euromicro Workshop on Real-
Time Systems, 1997 , 271-276.

[8] A. Wolfe. Software-Based Cache Partitioning for
Real-Time Applications. Proceedings of the 3th
International Workshop on Responsive Computer Systems,
1993.

[9] David E. Goldberg. Genetic Algorithms in Search,
Optimization & Machine Learning. Addison-Wesley Co.,
Inc, 1989.

[10] A. Shaw. Reasoning About Time in Higher-Level
Language Software. IEEE Transactions on Softwae
Engineering, 15(7), 1989, 875-889.

[11]M. Mitchell. An Introduction to Genetic
Algorithms. MIT Press, 1996.

[12] D. Patterson and J. L. Hennessy. Computer
Organization and Design. The Hardware/Software
Interface. Morgan Kaufmann. San Mateo, 1994.

