
J.L. Ayala et al. (Eds.): PATMOS 2011, LNCS 6951, pp. 43–52, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Architecture Extensions for Efficient Management of
Scratch-Pad Memory

José V. Busquets-Mataix, Carlos Catalá, and Antonio Martí-Campoy

Department of Computer Engineering, Universidad Politécnica de Valencia,
Camino de Vera s/n, 46022-Valencia, Spain

{vbusque,amarti}@disca.upv.es, ccatala@grupoazahar.com

Abstract. Nowadays, many embedded processors include in their architecture
on-chip static memories, so called scratch-pad memories (SPM). Compared to
cache, these memories do not require complex control logic, thus resulting in
increased efficiency both in silicon area and energy consumption. Last years,
many papers have proposed algorithms to allocate memory segments in SPM in
order to enhance its usage. However, very few care about the SPM architecture
itself, to make it more controllable, more power efficient and faster. This paper
proposes architecture extensions to automatically load code into the SPM whilst
it is fetched for execution to reduce the SPM updating delays, which motivates
a very dynamic use of the SPM. We test our proposal in a derivation of the
Simplescalar simulator, with typical embedded benchmarks. The results show
improvements, on average, of 30.6% in energy saving and 7.6% in performance
compared to a system with cache.

Keywords: Embedded processors, memory architecture, scratch-pad memory.

1 Introduction

In recent years, the commercial popularity of mobile embedded devices such as
phones, PDAs, cameras, MP4 players, etc. has attracted strong economic interests. As
a consequence, much research effort has been accomplished to increase the compu-
ting power of such devices to be able to incorporate as much functionality as possible.
However this increment in performance has been not accompanied by a equivalent
increment in battery technology. Despite the great step forward due to lithium-ion
batteries, since then, larger energy consumption requires larger battery size. Conse-
quently, while battery technology slowly advances, the effort should be made to
reduce the energy consumption of mobile embedded devices.

Compared to general purpose computing, there is an important key characteristic in
these devices that may be exploited: most of the workload is somewhat fixed and
known at design time. Therefore, some techniques may be used to allocate code and
data objects to a lower stage in the memory hierarchy (i.e. SPM).

In general computing, caches have played a decisive role in providing the memory
bandwidth required by processors. In fact, they became as one important technique to

44 J.V. Busquets-Mataix, C. Catalá, and A. Martí-Campoy

reduce the famous “memory bottleneck”. The caches memory has a very dynamic and
unpredictable behavior, capable of adapting its contents to any unknown workload.
However, it is not energy efficient because it requires tag memory and the hardware
comparison logic. Some authors have becoming to identify the memory subsystem as
the energy bottleneck of the entire system [3].

High energy consumption of the cache, and predictable workload in embedded
computing, has led the SPM memory to emerge as an efficient alternative to caches.
In addition to its energy efficiency, it is fully predictable, playing an important role in
real-time systems. The disadvantages are derived from the fact that the SPM is basi-
cally a small and fast memory mapped into the address space of main memory. There-
fore, its operation must be done explicitly by mapping memory objects by the linker
and loader, or by programming.

To do so, many approaches have been presented this decade to carefully select the
contents to be stored in SPM to improve energy and/or performance. Orthogonal to
them, this paper presents an original approach to reduce the overhead resulting from
updating the SPM contents at run time.

The contributions of the paper are new architectural extensions to dynamically
control the SPM. The difference among others solutions is that SPM loading is done
on the fly whilst code is fetched from memory for execution, with minimum time and
energy cost. This fact will enable allocating techniques to dynamically adapt the con-
tents of the SPM to the program run at a reduced delay cost. Moreover, these tech-
niques will trade-off to favor frequent updates, adapting the SPM contents to the pro-
gram flow in a more effective and precise way

Our proposal only requires small changes on the processor design. Our interest is
to obtain a realistic solution, simple enough to be implemented in a real world.

This paper is structured as follows. Section 2 reviews the related work. Section 3
proposes the overall architecture of our approach. The experimental setup is explained
in section 4. Section 5 discusses the experimental results obtained. Finally, section 6
concludes the paper.

2 Related Work

In the literature, there are many works that focus on reducing the energy consumption
and/or increasing performance by means of the effective use of SPM memories. These
papers present the SPM as worthy alternative to cache memories, when energy and
not only performance is important.

Many of these studies present a range of techniques on the allocation of code in the
SPM which can be divided into two types. First, those of a static approximation where
the contents of the SPM are assigned in advance and remain unchanged during pro-
gram execution [1], [2], and [4]. Second, the ones that perform a dynamic update of
the SPM contents at run time: Egger et al. [5] [6] and [7], Hyungmin Cho et al. [8],
Janapsatyat et al. [9], Steinke et al. [10], Polleti et al. [11] , Lian Li et al. [13] and
Doosan et al. [19]. The latter have the advantage of adapting the contents of the SPM
to the program run but at the cost of periodically reloading the SPM contents.

 Architecture Extensions for Efficient Management of Scratch-Pad Memory 45

There are some papers that propose hardware extensions to better control the SPM
[9], [11], [12], and [13]. In [9] Janapsatyat et al. introduce a special set of instructions
at compile time in a number of key points using a heuristic algorithm, which trigger a
hardware controller that manages the flow of data to the SPM. To the best of our
knowledge, this is the technique that better approximates to ours. However, the main
advantage of our solution is that it requires fewer instructions and less control logic to
operate.

Some papers propose the use of DMA to reduce the cost of copying data from
main memory to the SPM [11], [19]. The main difference to our proposal is the larger
die size and energy cost of this approach by using the DMA.

3 Architecture Extensions

Our proposal is based on a number of changes in the processor architecture, which
may be classified in two categories. The first contain small changes required in the
processor hardware design in order to support our approach. Second, three new in-
structions have been added to the instruction set. Below we explain these changes.

3.1 Hardware Design

Basically, the memory hierarchy is composed by the SPM and main memory. How-
ever, in order to take advantage of the spatial locality, we have added a prefetching
buffer (see figure 1). This buffer behaves like a small cache memory with only one
line in size. It will help in reduce the energy power and latency for those sequential
fragments of code that are not selected to reside in SPM.

The SPM will be updated dynamically at run time on the fly to contain loops and
functions that are executed frequently. No explicit load instructions are needed. The
processor has three execution modes: memory mode, SPM mode, and SPM function
mode. Changes among modes are controlled by three specific instructions.

In memory mode, instructions are brought to instruction decoder from main memo-
ry through the one-line-buffer (OLB) to exploit spatial locality. In SPM and SPM
function mode, instructions are fetched from SPM memory. However, before the
instructions may be used from SPM, they should be loaded to SPM from memory.
This mechanism may be compared to a cache miss.

These modes require some hardware changes. We add a second program counter,
so called SPM_PC and a tag register containing the memory address of the first in-
struction in SPM. A refinement of the technique proposes that the SPM may be split
in independent partitions or blocks. Each one will include a tag register (as shown in
figure 2). This schema may be used to hold in SPM different functions and/or loops at
the same time. However, this architecture is not comparable to cache, since SPM
partitions are much larger than cache lines, and consequently, there are only few
tag registers in SPM compared to cache. We also need a small tag controller for com-
parison and update, and a mechanism to invalidate the whole SPM partition in one
cycle.

46 J.V. Busquets-Mataix, C. Catalá, and A. Martí-Campoy

3.2 Architectural Issues

To deal with the executions modes proposed in former section, three new instructions
have been added to the processor architecture: SPM_start, SPM_call_start and
SPM_end. Both SPM_start and SPM_call_start include an immediate field containing
the SPM block number to be used. This block is selected by the programmer. These
instructions are inserted into the original code by the compiler or programmer to tell
the processor which pieces of code are selected to execute from SPM. For instance,
when a loop is selected, two instructions are inserted to mark the bounds of the code:
SPM_start at the beginning of the loop code, and SPM_end at the end.

When a SPM_start instruction is executed, the following actions take place: first,
processor changes to SPM running mode. Second, the counter SPM_PC is initialized
to the beginning of the SPM block (explicitly chosen by the SPM_start). Next, the
physical address of the instruction SPM_start is compared to the tag register corres-
ponding to the chosen SPM block. In case both addresses are equal, it means the con-
tents of the SPM block correspond to the instructions in main memory that follow the
SPM_start. Thus, the code is fetched from SPM. Both SPM_PC and PC counters are
incremented simultaneously to point to two instances of the same instruction, one in
main memory, and a copy in SPM. This schema will allow continuing execution from
main memory once the end of the SPM code is reached (either by reaching the end of
SPM block, or reaching SPM_end instruction). This allows dealing with loops
larger than the SPM block. Knowing SPM size, loops may also spread several SPM
blocks.

If tag comparison misses, the running code is not in the SPM block. The new start-
ing address is copied to the tag register and the SPM block contents are invalidated.
Next, the instructions are fetched from main memory to perform both, SPM load, and
execution. This operation may be compared to a cache cold start. For the second and
following pass of the loop, instructions are fetched from SPM.

Fig. 1. Architecture Fig. 2. SPM blocks

 Architecture Extensions for Efficient Management of Scratch-Pad Memory 47

The former mechanism works well for loops and pieces of code frequently used.
However, we propose an additional instruction, SPM_call_start, to deal with func-
tions that the source code is not available to the programmer (i.e. functions in com-
piled libraries). It works as follows:

When the PC reaches a SPM_call_start, processor changes to SPM_function mode.
Instructions are fetched from memory until a “call to function” instruction is found.
Once the jump is taken, the target address (beginning of the function) is compared to
the tag of the selected SPM block. The process that follows is somewhat similar to the
one described for the SPM_start instruction. There is only one additional difference.
The processor mode is changed to memory mode, once the end of the function is
reached (return instruction). Therefore, it is not necessary the insertion of the
SPM_end. This process may be seen in figure 3. Any call instruction to allocated
functions, must be preceded by a SPM_call_start. Otherwise, the functions will be
executed normally from main memory, without any SPM benefit.

There are also some particular cases that require a detailed explanation. The SPM
is loaded at the same time instructions are brought from memory for execution.
Therefore, it is possible to have some instructions only in memory until a given itera-
tion requires their execution (i.e. if then else structure inside the loop). The processor
must realize whether a location in SPM contains a valid instruction. In cache, this is
solved at line by line basis, through costly tag comparison. Our approach cope with
this issue performing a quick erase (invalidate) of the entire SPM block. This is ac-
complished in one processor cycle by a special hardware attached to the SPM memo-
ry addressing circuitry. The approach takes care to avoid any overhead in controlling
the SPM. See figure 4 for the overall fetching process.

The SPM is mapped in the same physical address space than main memory. A key
benefit of our approach is that it does not require virtual memory manager, allowing
its use in medium to small embedded processor. However, we have to take special
care of any flow change (jump, call). For a piece of code that is brought from memory
to SPM, for the point of view of the architecture, the instructions are changing their
physical addresses.

The main structures that require jump instructions are loop and if then else. Both of
them use branch instructions with relative offset, thus no absolute addressing is neces-
sary. Regarding function calling, the returning address is stored in stack. The proces-
sor have to select either pushing the SPM_PC or the PC depending on where is placed
the call instruction. When the return is executed, the program flow returns to the
caller code, irrespective it is in SPM or in memory. The processor has to switch
automatically between memory and SPM modes.

4 Experimental Setup

In order to compare the cache against the SPM, we have used the simulator Vatios
[14]. Vatios is a simulator based on the popular SimpleScalar framework [15].
Similarly to Wattch simulator [16], Vatios adds a model to calculate the energy
consumption of both entities, memory and processor.

48 J.V. Busquets-Mataix, C. Catalá, and A. Martí-Campoy

Fig. 3. Fetching process

Fig. 4. Instruction fetch in SPM mode

Vatios presents a series of advantages in the calculation of the energy consumption

with respect to Wattch. To calculate the energy consumption of the SPM and the
cache, Vatios is based on the energy model called Cacti [17]. The SPM energy effi-
ciency are due basically to the reduced control circuitry compared to the cache. To
allow a fair comparison, both memories have been simulated using the same manufac-
turing technology.

Attending to the intended target architecture of this technique, we have selected
realistic benchmarks. In particular, we have chosen a collection of programs selected
by the The Mälardalen WCET research group [18]. They are representative programs
for embedded systems, and mainly intended to be used in WCET analysis tools. We
have selected the following:

Bsort100: Bubblesort program. Tests the basic loop constructs, integer comparisons,
and simple array handling by sorting 100 integers.

Cnt: Counts non-negative numbers in a matrix. Nested loops, well-structured code.

Compress: Data compression program. Adopted from SPEC95 for WCET-
calculation. Only compression is done on a small buffer containing totally random
data.

Cover: Program for testing many paths. A loop containing many switch cases.

 Architecture Extensions for Efficient Management of Scratch-Pad Memory 49

Expint: Series expansion for computing an exponential integral function. Inner loop
that only runs once, structural WCET estimate gives heavy overestimate.

Fdct: Fast Discrete Cosine Transform. Many calculations based on integer array
elements.

Fir: Finite impulse response filter (signal processing algorithms) over a 700 items
long sample. Inner loop with varying number of iterations, loop-iteration dependent
decisions.

The processor architecture of the simulator has been modified to incorporate the pro-
posed approach. Since the simulator version that we used only offers a cache memory,
we have implemented the SPM from scratch. We have considered the speed and energy
models for this kind of memory. The decoder unit has accommodated the new instruc-
tions and, the necessary additional registers (SPM program counter) have been added.
We have validated the correctness of the implemented extensions by exhaustive running
of real workload.

The SPM control instructions have been inserted into the code by heuristics. We
have not used any automatic allocation technique. The hot spots in the program can be
easily identified by profiling. Benchmarks that are focused to WCET have help in this
task.

The experimental process is as follows: first, from the C source code of bench-
marks, we have added the SPM control instructions. The resulting code is compiled
with sslittle-gcc. The binary programs are simulated by the Sim-Vatios simulator to
obtain a trace. This trace is used by the tool Power-Vatios to obtain the energy con-
sumption.

Regarding the hardware configuration, the benchmarks are simulated over three
different cache or SPM sizes: 128, 256 and 512 bytes. The cache is direct mapped.
The SPM has only one block. This is due the fact that the programs considered do not
have concurrent hot spots. Therefore, the optimal configuration is a larger and unique
block, but it may be updated frequently, thanks to the reduced overhead of the
approach.

5 Experimental Results

The obtained results are depicted in figure 5 to 10. We can see that for 128B (Figures
5 and 6) the SPM performs better in both performance and energy consumption across
all benchmarks. The SPM provides an average improvement in performance by 17%,
and 29% in energy consumption with respect to the cache. The better results are dis-
played for the fir benchmark in which our approach obtains an improvement in per-
formance of 44% and energy consumption 53%.
For 256B sizes (Figures 7 and 8) for the eight benchmarks used, only expint has better
performance using a cache. This program consists of two nested loops where the outer
loop cannot be entirely placed into the SPM and the most inner loop is executed only
under certain circumstances. This makes that the cache takes advantage for this case.
Summarizing, the SPM 256B has a 9% improvement in performance and 31% in
energy consumption with respect to the cache.

50 J.V. Busquets-Mataix, C. Catalá, and A. Martí-Campoy

Fig. 5. Perfomance 128B Fig. 6. Energy comsumption 128B

Fig. 7. Performance 256B Fig. 8. Energy consumption 256B

Fig. 9. Performance 512B Fig. 10. Energy Consumption 512B

 Architecture Extensions for Efficient Management of Scratch-Pad Memory 51

Finally, for SPM and cache sizes of 512B (Figures 9 and 10) we note that with re-
spect to the performance, both of them behave similarly, but the cache shows the best
results in five of the eight benchmarks. These differences are not significant showing,
in average, a 3% in performance loss for the SPM with respect to the cache. The dif-
ferences are larger in terms of energy consumption, but in this case the SPM outper-
form the cache in all benchmarks, presenting an average of 32% improvement with
respect to the cache.

In general, we can observe that SPM slightly beats the cache in performance (7.6%
on average), but largely reduces the energy consumption by 30.6% on average. It is
important to mention that this results would be even better for SPM, if we were used a
cache of the same silicon die size than the SPM. For simplicity reasons, we have
compared directly both structures with same byte sizes. Many other works in the
literature use the more fair comparison over the same die size.

6 Conclusions and Future Work

This paper has presented an original approach to better control the scratch-pad memo-
ry in embedded processors in order to reduce energy consumption. The key idea is to
reduce as much as possible the overhead resulting from updating the SPM contents at
run time. This allows allocating techniques to dynamically adapt the contents of the
SPM to the workload execution, maximizing the number of hot spots that may be
loaded into SPM.

The technique is orthogonal and complementary to many solutions presented to al-
locate objects in SPM. Those solutions may benefit and increase the effectiveness
adopting the proposed architectural extensions.

The proposed technique has been compared to a instruction cache over a typical
workload for embedded systems. On average, compared to a processor with an on-
chip instruction cache of the same byte size, our approach improves performance by
7,6% and reduces energy consumption by 30,6%. For certain workloads, our approach
has reached an increment of 44% in performance, and a reduction in power around
53%.

This paper has exploited the reductions on energy of the SPM. Future work will
focus on the predictable nature of the SPM to exercise our technique in order to obtain
better worst case execution times for real-time systems.

Acknowledgments. This research was sponsored by local Government “Generalitat
Valenciana” under project GV07/ 2007/122.

References

1. Banakar, R., Steinke, S., Lee, B.-S., Balakrishnan, M., Marwedel, P.: Scratchpad memory:
design alternative for cache on-chip memory in embedded systems. In: CODES 2002,
pp. 73–78 (2002)

2. Verma, M., Wehmeyer, L., Marwedel, P.: Cache-Aware Scratchpad Allocation Algorithm.
In: DATE 2004, pp. 1264–1269 (2004)

52 J.V. Busquets-Mataix, C. Catalá, and A. Martí-Campoy

3. Verma, M., Marwedel, P.: Advanced memory optimization techniques for low-power em-
bedded processors, pp. I-XII, 1–188. Springer, Heidelberg (2007)

4. Nguyen, N., Dominguez, A., Barua, R.: Memory allocation for embedded systems with a
compile-time-unknown scratch-pad size. In: CASES 2005, pp. 115–125 (2005)

5. Egger, B., Kim, C., Jang, C., Nam, Y., Lee, J., Min, S.L.: A dynamic code placement tech-
nique for scratchpad memory using postpass optimization. In: CASES 2006, pp. 223–233
(2006)

6. Egger, B., Lee, J., Shin, H.: Scratchpad memory management for portable systems with a
memory management unit. In: EMSOFT 2006, pp. 321–330 (2006)

7. Egger, B., Lee, J., Shin, H.: Dynamic scratchpad memory management for code in portable
systems with an MMU. ACM Trans. Embedded Comput. Syst. 7(2) (2008)

8. Cho, H., Egger, B., Lee, J., Shin, H.: Dynamic data scratchpad memory management for a
memory subsystem with an MMU. In: LCTES 2007, pp. 195–206 (2007)

9. Janapsatya, A., Parameswaran, S., Ignjatovic, A.: Hardware/software managed scratchpad
memory for embedded system. In: ICCAD 2004, pp. 370–377 (2004)

10. Balakrishnan, M., Marwedel, P., Wehmeyer, L., Grunwald, N., Banakar, R., Steinke, S.:
Reducing Energy Consumption by Dynamic Copying of Instructions onto Onchip Memo-
ry. In: ISSS 2002, pp. 213–218 (2002)

11. Poletti, F., Marchal, P., Atienza, D., Benini, L., Catthoor, F., Mendias, J.M.: An integrated
hardware/software approach for run-time scratchpad management. In: DAC 2004, pp.
238–243 (2004)

12. Li, L., Gao, L., Xue, J.: Memory Coloring: A Compiler Approach for Scratchpad Memory
Management. In: IEEE PACT 2005, pp. 329–338 (2005)

13. Lee, L.H., Moyer, B., Arends, J.: Instruction fetch energy reduction using loop caches for
embedded applications with small tight loops. In: ISLPED 1999, pp. 267–269 (1999)

14. Victorio, J.A., Torres Moren, E.F., Yúfera, V.V.: Vatios: Simulador de Procesador con Es-
timación de Potencia. XVIII Jornadas de Paralelismo, Zaragoza (2007)

15. Burger, D., Austin, T.M.: The SimpleScalar Tool Set Version 2.0. Technical Report 1342,
Computer Sciences Department. University of Wisconsin–Madison (May 1997)

16. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for architectural-level power
analysis and optimizations. In: ISCA 2000, pp. 83–94 (2000)

17. Tarjan, D., Thoziyoor, S., Jouppi, N.: CACTI 4.0, P. HPL-2006- 86 20060606
18. The Mälardalen WCET research group. The Mälardalen WCET benchmarks homepage,

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
19. Cho, D., Pasricha, S., Issenin, I., Dutt, N.D., Ahn, M., Paek, Y.: Adaptive Scratch Pad

Memory Management for Dynamic Behavior of Multimedia Applications. IEEE Trans. on
CAD of Integrated Circuits and Systems (TCAD) 28(4), 554–567 (2009)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

