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Abstract. Cache locking have shown during the last years their useful-
ness easing the schedulability analysis of multitasking, preemptive, real-
time systems. Cache locking provides a high degree of predictability while
system performance is maintained at a similar level to that provided by
regular, highly unpredictable, non-locked cache. Cache locking may also
be useful to reduce hardware costs by means of reducing the size of the
cache memory needed to make a real-time system schedulable. This work
shows how full, dynamic cache locking may help to reduce the size of the
cache memory versus a regular cache. This reduction is possible thanks
to a genetic algorithm that selects the set of instructions that have to be
locked in cache to provide the maximum cache size minimization while
keeping the system schedulable.
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1 Introduction

Cache memories are an important advance in computer architecture, providing
significant performance improvements. However, in the area of real-time systems,
the use of cache memories introduces serious problems regarding predictability.
The dynamic and adaptive behaviour of a cache memory reduces the average
access time to main memory, but presents a non-deterministic fetching time
[7]. In multitasking, preemptive, real-time systems, estimating the Worst Case
Response Time (WCRT) of every task in a system populated with a regular
cache becomes a problem with a solution hard to find due to the interference on
the cache contents produced among the tasks.

In recent years, the use of locked caches have appeared as a solution to
ease the schedulability analysis of multitasking, preemptive, real-time systems
maintaining, at the same time, similar performance improvements than systems
populated with regular cache memories. Several works have been presented to
apply cache locking in real-time systems, both for instructions [3][15][14][1] and
data [16]. In this work, we focus on instruction caches only, because 75% of
accesses to main memory are to fetch instructions [7].
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The paper is organised as follows: section two describes the objective and
the goal of this work. Section three brief introduces the use of cache locking in
multitasking, real-time systems. Section four describes with detail the Genetic
Algorithm that selects the contents to load and lock in cache. Sections five, six
and seven show the setup, the procedures and the results of experiments carried
out. Finally, conclusions are presented in section eight.

2 Rationale

The ability to implement custom processors in FPGAs or ASICs has partly sim-
plified the choice of the processor for a real-time system [11]. With these it is
possible to build a system with its performance tailored to the actual require-
ments, decreasing the cost of the resulting system. What’s more important, the
designer can incorporate those architectural improvements that interest he most.

Although achieving predictability and easing the schedulability analysis is
the main goal and advantage of cache locking, it may help to minimize the cache
size thus saving costs and reducing the power consumption of the system.

The goal of this work is to show that LSM-dynamic use of cache locking may
reduce the cache size needed to make a real-time system schedulable in front of
a regular cache. And this advantage is added to the predictability and easiness
of analysis provided by cache locking.

3 Use of cache locking

Cache locking means to keep all or part of cache contents away from replacement
policy, or to allow replacement only in particular scenarios. In brief, the adaptive
behaviour of regular caches is reduced or completely eliminated.

When the entire cache is locked, it is called full locking. If only some parts of
the cache contents are locked, no matter if these parts are cache ways or cache
lines, it is called partial locking. [6]

In multitasking systems, when locked contents remain unchanged for the
whole life of the system, it is called static use or static cache locking.

If locked contents may change in a controlled way, for example in task switch,
it is called dynamic use of cache locking. Some authors prefer to call this multi-
plexed or time-shared cache.

Several previous works in the literature apply cache locking over individual,
isolated tasks in order to improve or accurately estimate the Worst-Case Execu-
tion Time (WCET) of a task. The work developed in this paper deals with mul-
titasking, preemptive, real-time systems that presents a more complex problem,
because includes the WCET estimation together with the WCRT estimation,
dealing with intra-task and inter-task interference related to cache [2][8].

3.1 Full, dynamic use of cache locking

In here called dynamic use of cache locking every task may use and lock the
cache in full for its own instructions. Replacement of cache contents is allowed,
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but at some moments only.To our best knowledge, the first proposal of dynamic
use of cache locking appears in [3] where cache contents may change only when
a task starts its execution or resumes after a preemption, flushing the cache
contents and reloading it with its own set of selected instructions. This is the
behaviour considered in this work.

WCET estimation for each task in the system is easy, because during the
execution of the task the cache contents is always the same, even after a preemp-
tion, because the first action when a task resumes its execution is to reload the
cache with its own instructions.

Cache Response Time Analysis (CRTA) [2] is here used to estimate the re-
sponse time of tasks, taking into account the time needed to reload the cache
before a task runs or resumes its execution. This time, called cache refill penalty
or cache-related preemption delay is added to the execution time of each task
for each run and for each preemption, giving a safe upper bound of its WCRT.

Reloading cache contents when a task starts or resumes execution may be
accomplished by software or hardware means. By software, the scheduler is over-
loaded with a routine that read from main memory the list of main memory
blocks (instructions) that were off-line selected to load and lock in cache. For
each main memory block, the routine accesses main memory two times: first,
to fetch the address of the block to be loaded, and second, to effectively read
this block and transfer it to the cache memory by means of specific instructions.
Some other constant overload applies, and the total temporal cost to run this
routine is added to CRTA as the cache refill penalty.

Loading instructions by means of software adds an important overhead, so in
[15] a hardware solution is proposed. An extra, dedicated memory is added, called
the Locking State Memory (LSM). Its role is to store the status of every main
memory block, that is, whether it is selected or not to be locked in cache. This
way the LSM provides a mechanism to discriminate which blocks must be loaded
into the cache and hence a way to allow for automatic, on-demand loading of
the selected main memory blocks. In other words, instead of locking the selected
blocks into a locked cache, the same effect can be attained by avoiding loading
into the cache the unselected blocks.

4 Using a Genetic Algorithm to select cache contents

Cache locking intrinsically provides predictability. But other aspects, like perfor-
mance, depend on the set of instructions selected to be locked in cache. Random
selection of these instructions will give predictability and easiness of analysis,
but system performance may be seriously degraded.

Several algorithms [5] have been developed in order to select instructions
to load and lock in cache that improves system performance, or at least, main-
tains the system performance close to a system populated with a regular, non-
predictable cache memory.

In [9] a new version of a genetic algorithm is proposed. The target of this
algorithm is not to improve system performance but to reduce the size of the



4 Marti Campoy et al.

cache memory needed to get an schedulable real-time system. This algorithm is
used on static locking and outperforms previous results [4] where a performance-
targeted algorithm was used.

In this paper the algorithm is adapted to be used on dynamic locking. This
adaptation is done primarily in two points: in the representation of the problem
in order to allow each task to fully utilize the cache, and in the evaluation
of individuals where the CRTA equation corresponding to the dynamic cache
locking using an LSM is used. The GA is executed in the design phase of the
real-time system, so its execution time does not affect nor results in overhead
for the real-time system. Below the main operators of the GA are described.

Problem Representation. A tri-dimensional matrix stores the status of main
memory blocks in order to determine whether they are selected or not to be
loaded and locked into cache. The first index used to access this matrix identifies
to which task the memory block belongs, the second index identifies the set or
cache memory line in which the block is mapped, and the third dimension is used
to store the list of blocks that are mapped to that cache set/line together with
their corresponding status. This rather complex structure allows crossing two
individuals and mutating the resulting individuals guaranteeing that the cache
mapping function will not be violated irrespective of the cache associativity
degree. In fact, the representation is a list (of tasks) of lists (of cache sets/lines)
of lists (of selected blocks for each cache set/line). The last list (selected blocks)
is the responsible of fitting the mapping function. When individuals are created,
the number of selected blocks for each set/line is at most the cache associativity
degree. In crossover, the splitting point is restricted to the second dimension,
avoiding the division of the third dimension of an individual, so the number of
selected blocks remain unchanged and in a valid range. Regarding mutation, it
only unlocks blocks, so it is not possible that the resulting number of selected
blocks will be over the associativity degree.

Initial Population. The initial individuals are created by selecting a pseudo-
random number of blocks to load and lock in cache. These blocks may belong to
any task. Also, initialization creates a single individual with all of the blocks of
every task marked as selected for being loaded and locked in cache memory. The
purpose of including the special individual is to broaden the initial search space
and guarantee that the algorithm starts with at least one schedulable individual.

The fitness function results from the combination of the result of the schedu-
lability test, the number of used cache lines, and the system global utilisation.
This way, the fitness value for an individual is a 3-tuple (S,L, U), where S is
the boolean result from the schedulability test, L is the cache size, measured in
cache lines, the individual needs, and U is the global utilisation of the system.
An individual i with fitness (Si, Li, Ui) is better than individual j with fitness
(Sj , Lj , Uj) if:

i) Si and not(Sj) or

ii) Si and Sj and (Li < Lj) or

iii) Si and Sj and (Li = Lj) and (Ui < Uj)
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That is, and individual is better than other if it is schedulable and the other
one is not, or if it uses a smaller cache (in case both are achedulable), or, in case
of a tie, it presents a lower system utilisation.

As selection policy binary tournament has been chosen. To select a parent
two individuals are pseudo-randomly chosen, their fitness functions compared,
and the better individual is chosen. The same procedure is used to choose the
other parent. Besides this selection, an elitist selection is introduced. Two copies
of the best individual are made, one of the copies is exposed to mutation while
the other one suffers no mutation and is effectively incorporated into the next
generation without any modification.

Single point crossover is used in this algorithm. The single point crossover is
obtained by splitting every parent at a locus given by a pair (task number, set number)
and creating two new individuals by exchanging the parts of the two parents.

In the mutation process the algorithm pseudo-randomly selects a set of locked
blocks and marks them as unlocked, thus decreasing the number of locked blocks
and therefore, the cache size.

The GA execution finishes when a predetermined number of generations has
been reached. This value and the remaining input parameters are detailed be-
low: Population size: 200 individuals; Termination condition: 5000 generations;
Crossover probability: 100%; Mutation probability: 8%; Runs for each GA exper-
iment to avoid seed effects: 25. The average cache size of these runs is presented
in this work.

The input parameters of the genetic algorithm are: Algebraic expressions
for tasks’ WCET estimation [3]; List of main memory blocks used by each task;
Periods of tasks; Hit and miss times; Cache line / main memory block size; Cache
mapping function.

The output of the GA includes: worst-case execution time and worst-case
response time of each task, the minimum cache size that makes the system
schedulable, and the list of main memory blocks selected to be loaded and locked
in the cache.

It is important to recall that execution time and response time of tasks
provided by the genetic algorithm are not simulated, but estimated by means of
cache-aware analysis methods (CRTA).

5 Experiment setup

In order to study the ability to reduce the cache size the real-time systems
presented in [9] were used. In this set of systems there are 14 different task sets.
Tasks are artificially created to stress the locking/regular cache scheme. Main
parameters of each task are defined, like its size, the number and size of loops
and their nesting level, number of if-then-else structures and their respective
sizes. These parameters are fixed or randomly selected. Then, a simple software
tool creates the assembly code. This code is MIPSR2000 compatible.
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Table 1 shows the different sets of tasks, the number of tasks per set, the
sum of task sizes, their average size, and the system utilisation when the system
runs on a 4096 lines-size regular cache.

Task periods are manually adjusted to force different number of preemptions
among the tasks and therefore setting the system utilisation in different values,
creating four scenarios. In all four scenarios and for all task sets, task deadlines
are equal to task’s periods and priority is assigned by the Rate Monotonic policy
(the shorter the period the higher the priority).

The tasks in the first scenario have large periods, much longer than their
respective response times, so there are no preemptions among tasks and the
resulting system utilisation is low: around 30% when the system runs on a regular
cache larger than the sum of all tasks sizes, that is, when only compulsory misses
may occur. This scenario is called Low Interference (LI).

The tasks in the second scenario have also large periods, but not very far
from their response times, so some preemptions may occur. System utilisation
is this case is around 60% when system runs on a regular cache larger than the
sum of all tasks sizes, that is, when only compulsory misses may occur. This
scenario is called Low Medium Interference (LMI).

In the third scenario the tasks have periods close to their respective response
times so many preemptions occur, increasing response times and therefore, sys-
tem utilisation. In this case the system utilisation is around 80% when system
runs on a regular cache larger than the sum of all tasks sizes, that is, with com-
pulsory misses only. This scenario is called Medium High Interference (MHI).

Task periods in the fourth scenario are very close to their response times, so
the number of preemptions is large and the system utilisation grows up to 95%
when system runs on a regular cache larger than the sum of all tasks sizes. This
scenario is called High Interference (HI).

Table 1 shows the system utilisation for each set of tasks, and for each con-
figuration of deadlines when the system runs on a regular cache larger than the
system size.

A total of 56 systems = 14 (task sets) x 4 (periods sets) are evaluated under
two architectures: regular caches, and full, dynamic cache locking by means of
hardware LSM.

Using the same task set but different task periods allows assessing the be-
haviour of the architectures and algorithms in front of a wider range of cache
size requirements: as the task interference increases a larger cache is necessary
to keep the system schedulable.

Results for regular caches come from simulation, while results for LSM cache
locking come from estimation of WCET and WCRT by means of CRTA. This
way, actual response time of tasks when using regular caches may be longer,
but never shorter. In the other hand, actual response time of tasks when using
cache locking may be shorter, but never longer, because they are estimated using
conservative approaches. Conventional cache benefit from this situation because
optimistic values are used for regular cache in front of conservative values for
cache locking.
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Table 1. Main parameters of the set of tasks used in experiments, and system utilisa-
tion for each scenario

Task # of Total size Average size LI LMI MHI HI
set tasks (instructions) (instructions) (%) (%) (%) (%)

1 3 2565 855.0 34.8 62.2 78.7 96.1
2 4 3397 849.3 35.0 60.6 78.1 98.4
3 8 1640 205.0 43.9 61.5 79.0 93.1
4 8 1640 205.0 36.3 59.5 82.3 95.7
5 5 2124 424.8 38.0 58.6 76.1 97.5
6 4 3252 813.0 32.0 62.4 76.7 93.9
7 3 3678 1226.0 40.9 57.1 80.5 97.8
8 3 1923 641.0 34.5 61.2 78.0 91.5
9 5 3086 617.2 38.7 58.8 78.9 96.5
10 3 3602 1200.7 35.0 62.0 80.2 93.2
11 4 1904 476.0 32.4 61.7 81.8 95.2
12 3 2378 792.7 36.5 68.7 83.3 96.8
13 5 790 158.0 29.4 59.3 75.9 98.0
14 5 2146 429.2 28.2 60.8 82.5 92.0

Regarding cache characteristics, fetching an instruction from cache takes 1
cycle while fetching an instruction from main memory takes 10 cycles. The only
mapping function considered for cache locking is direct mapping, because this
one is the most restrictive and provides the worst performance for cache locking
[3][13]. The maximum size of the cache is 4096 lines, where each cache line
contains four words, and each word is four bytes long. The instruction size is
four bytes also. A main memory block presents the same size than a cache line.

The system includes a prefetch buffer with the size of one cache-line in order
to get advantage of spatial locality when the processor fetches a main-memory
block not locked in cache.

6 Experiment procedures

The goal of the experiments carried out is to find the minimum cache size re-
quired to keep the system schedulable. This minimum size depends on the char-
acteristics of the software system (number and size of tasks, periods, deadlines)
and the underlying architecture the system runs on (regular cache or LSM-based
dynamic cache locking).

For regular cache, in order to find the minimum cache size needed to make
the system schedulable, several simulations of the system execution have been
accomplished varying the cache size, starting in 1 line and increasing one by one,
finishing when the cache size is one line larger than the total sum of the sizes
of the system tasks. It would be possible to stop the experiments when system
becomes schedulable but we want to study if there are discontinuities in the size
of the cache that makes the system schedulable. No discontinuities were found.
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Simulations were accomplished using a modified version of SPIM, a MIPSR2000
simulator [12]. Input parameters for simulation are: Code of tasks in assembly;
Periods of tasks; Cache size; Mapping policy (direct, two-way and full associative
were tested, choosing the best result for each system, that is, the smaller cache
size, usually direct mapping); Hit and miss times (1 and 10 cycles); Cache line
/ main memory block size (four four-byte-size instructions).

The output from simulation includes: worst execution time of tasks, worst
response time of tasks, system utilisation, and schedulability test result (yes/no).

For cache locking the minimum cache size is found by a direct search using
the genetic algorithm previously described. The genetic algorithm uses cache-
aware analysis methods to estimate the response time of task and decide if the
system is schedulable for a particular cache size.

The experiment setup and procedures give us a total of 112 experiments (56
systems multiplied by two cache architectures under study).

7 Experiment results

The first outcome from experiment results is completely unexpected. For 14
experiments, the genetic algorithm considering the LSM architecture is unable
to find a cache size to make the system schedulable. Even using a cache larger
than the sum of the sizes of all the tasks that belong to the system, the genetic
is unable to find a solution. The 14 experiments with no solution belong to the
set of systems with the highest degree of task interference and very high system
utilisation (scenario HI).

But the systems are in fact schedulable because when using a regular cache,
there is a cache size for each system that makes it schedulable. So the problem
is not in the real-time systems.

The reason the GA fails in finding a schedulable-making cache size for the
LSM architecture is because of an excessively conservative approach when esti-
mating the cache refill penalty.

The proposed CRTA analysis that is embedded in the GA considers that
in every preemption the cache is completely flushed, and when a task resumes
its execution, the full set of instructions selected to lock in cache is reloaded,
without regard about how many of these instructions are useful, that is, will be
executed before the next preemption.

Actually, both for regular and LSM cache, after a preemption, only instruc-
tions that are fetched by the processor between two preemptions may produce a
miss, increasing the cache refill penalty. The instructions executed between two
preemptions may be all of those selected to be locked in cache, or only a small
subset, depending on the task structure and the time between preemptions.

With the conservative analysis the cache refill penalty is well-known, con-
stant, and safe. But may be excessively larger. And the larger the number of
preemptions, the worse the overestimation. This is the reason this problem arise
for the systems with a high degree of interference; tasks suffer a lot of preemp-
tions.
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Table 2. Main statistics for LREG - LLSM

Statistic LI LMI MHI HI

Average +123.35 -37.71 -146,5 -951.0
Min -59 -414 -1092,0 -2074
Max +327 +76 +189 -54

Cases<0 2 5 10 14
Cases>0 12 9 4 0

Avg. Reduction 47% -5% -14% -39%
P-value t-test 0.0039 0.387 0,118 0.00059
T-test answer Reject Do not Do not Reject

to null hypothesis reject reject
P-value Wilcoxon test 0.0057 0.66 0,09 0.00109
Wilcoxon test answer Reject Do not Do not Reject
to null hypothesis reject reject

In following results, for the 14 systems where the GA is not able to find
a cache size, we will use a cache with as many lines as the sum of the sizes
of all tasks of the system, and manually disables the locking mechanism. All
instructions will be loaded in cache when they are fetched by the processor, and
they will remain in cache because of the size of cache makes no conflicts.

Analysis of result is accomplished grouping systems in the four previously
described scenarios regarding its degree of task interference and value of utilisa-
tion (LI, LMI, MHI and HI). For each one of the four groups, a paired sample
analysis is presented [10].

Table 2 shows the main statistics for LREG (number of cache lines used by
the regular cache) minus LLSM (number of cache lines used by the LSM cache
locking). for the four scenarios. The table also contains the p-value of a t-test
and a Wilcoxon signed-rank test of null hypothesis and the answer to these tests,
using an α = 0.05.

Figure 1 shows the ratio LREG to LLSM for systems grouped in the four
scenarios. The ratio is calculated as (LREG/LLSM)−1. This figure shows if the
LSM needs a smaller cache than the regular cache and the relative magnitude
of cache saving. Values over 0 means the LSM needs less lines of cache than a
regular cache. In the other hand, values below indicates that regular cache beats
LSM, using a smaller cache to make schedulable a system.

In Figure 1-a) can be clearly observed that the LSM is able to make the
systems schedulable using a smaller cache in most of the cases when the degree
of interference between tasks is low (LI); this is confirmed by the answer of
both tests which rejects the Null Hypothesis, meaning there is a statistically
significant difference in the cache size needed by the LSM and the regular cache.
The cache saving by means of using the LSM is in average of 45%, but in almost
half of the cases the cache size reduction is over 100%.

In Figure 1-b), systems in scenario LMI, can be seen that there are more
cases where the LSM needs a smaller cache, but in the cases where the LSM



10 Marti Campoy et al.

Fig. 1. Percentage of reduction of cache using LSM for experiments with periods a)LI,
b)LMI, c)MHI and d)HI (LREG/LLSM)− 1.

needs a bigger cache the cache size is much larger than the cache size needed
by regular use. Attending the statistics in the third column (LMI) of table 2,
the average cache size reduction is about -5%, that is, the LSM needs in average
larger caches than the regular use of cache, but the answer of both tests is that
the Null Hypothesis cannot be rejected; that is, there is no statistically significant
differences between the cache sizes used by the two studied uses of cache.

In Figure 1-c), systems in scenario MHI, a slight bias to negative values can be
appreciated; that is, there are more cases where the LSM needs a larger cache
to make the system schedulable. Attending the statistics shown in the fourth
column (MHI) of table 2, the LSM needs, in average, a 10% larger cache than
the regular use of cache (reduction of -0.09%), but response of Null Hypothesis
tests are do not reject; that is, there is no statistically significant difference
between the cache size used by the two studied uses of cache.

Finally, the figure 1-d) shows the ratio LREG to LLSM for systems with High
Interference, HI, calculated as (LREG/LLSM) − 1. The data in this figure is
very clear: for all cases using a regular cache needs a smaller cache to make the
system schedulable. And in front of LSM, the cache needed by the regular cache
is about 30% smaller in average, and even more than 50% smaller in some cases.
Statistics on the fifth column of table 2 confirms this conclusion, in particular the
tests that reject the Null Hypothesis; that is, there are statistically significant
differences between the regular use of cache and the LSM.

Results of the analysis of the four groups are coherent with the analysis of
overestimation described in the beginning of this section. The larger the number
of preemptions, the larger the overestimation. This way, the larger the interfer-
ence between tasks, the smaller the cache saving by means of LSM dynamic use
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of cache locking. For one of the scenarios (LI) the LSM is able to significantly
reduce the size of cache required to make the system schedulable. That is, using
cache locking by means of a LSM architecture helps the system designer to save
costs and power. In the other extreme, another scenario (HI) shows that the
LSM needs larger caches than the regular use, so its use is not recommended if
the main concern is related to system costs or power consumption. For the two
intermediate scenarios (LMI and MHI) there is a tie, that is, both the LSM and
the regular cache will need the same size of cache to make the system schedula-
ble. So, in general terms and talking about these intermediate scenarios, there is
no significant difference in using a regular cache or a dynamically locked cache,
concerning about system cost and size only.

But cache locking adds a precious value to the design process of a real-time
system because they provide predictability and easiness of analysis.

8 Conclusions

This work presents a new application of dynamic cache locking, extending the re-
search from a previous proposal where static cache locking was applied to reduce
the instruction cache size in preemptive, multi-task, real-time systems. Results
from experiments carried out show, first, that for some systems the dynamic
use of cache locking is not suitable due to the overly conservative considerations
that have to be used in the schedulability analysis, so for high interference, high
utilisation systems, regular caches provide better results.

Second, there is a large number of cases where no statistically significant dif-
ference exists, in average, in the cache size needed to make a system schedulable
when using a regular cache or a locked cache. In these cases, and for the same
cache size, cache locking offers, in front of a regular cache, the benefit of high
predictability and simplicity in the schedulability analysis.

Only when the system utilisation is low a LSM-based locked cache allows a no-
table significant cache size minimization maintaining the predictable behaviour
and ease of analysis.

Experiment results also show that for some systems, and under some con-
ditions, there may be important differences in the cache size needed to make
the system schedulable. Future work will study the system characteristics and
conditions that determine the architecture that gets a smaller cache, so recom-
mendations to the system designer can be done.
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